Step | Hyp | Ref
| Expression |
1 | | inss1 3476 |
. . 3
⊢ ((A ×k B) ∩ (C
×k D)) ⊆ (A
×k B) |
2 | | xpkssvvk 4211 |
. . 3
⊢ (A ×k B) ⊆ (V
×k V) |
3 | 1, 2 | sstri 3282 |
. 2
⊢ ((A ×k B) ∩ (C
×k D)) ⊆ (V ×k
V) |
4 | | xpkssvvk 4211 |
. 2
⊢ ((A ∩ C)
×k (B ∩
D)) ⊆ (V
×k V) |
5 | | an4 797 |
. . 3
⊢ (((x ∈ A ∧ y ∈ B) ∧ (x ∈ C ∧ y ∈ D)) ↔ ((x
∈ A ∧ x ∈ C) ∧ (y ∈ B ∧ y ∈ D))) |
6 | | elin 3220 |
. . . 4
⊢ (⟪x, y⟫
∈ ((A
×k B) ∩
(C ×k D)) ↔ (⟪x, y⟫
∈ (A
×k B) ∧ ⟪x,
y⟫ ∈ (C
×k D))) |
7 | | vex 2863 |
. . . . . 6
⊢ x ∈
V |
8 | | vex 2863 |
. . . . . 6
⊢ y ∈
V |
9 | 7, 8 | opkelxpk 4249 |
. . . . 5
⊢ (⟪x, y⟫
∈ (A
×k B) ↔
(x ∈
A ∧
y ∈
B)) |
10 | 7, 8 | opkelxpk 4249 |
. . . . 5
⊢ (⟪x, y⟫
∈ (C
×k D) ↔
(x ∈
C ∧
y ∈
D)) |
11 | 9, 10 | anbi12i 678 |
. . . 4
⊢ ((⟪x, y⟫
∈ (A
×k B) ∧ ⟪x,
y⟫ ∈ (C
×k D)) ↔
((x ∈
A ∧
y ∈
B) ∧
(x ∈
C ∧
y ∈
D))) |
12 | 6, 11 | bitri 240 |
. . 3
⊢ (⟪x, y⟫
∈ ((A
×k B) ∩
(C ×k D)) ↔ ((x
∈ A ∧ y ∈ B) ∧ (x ∈ C ∧ y ∈ D))) |
13 | 7, 8 | opkelxpk 4249 |
. . . 4
⊢ (⟪x, y⟫
∈ ((A
∩ C) ×k
(B ∩ D)) ↔ (x
∈ (A
∩ C) ∧
y ∈
(B ∩ D))) |
14 | | elin 3220 |
. . . . 5
⊢ (x ∈ (A ∩ C)
↔ (x ∈ A ∧ x ∈ C)) |
15 | | elin 3220 |
. . . . 5
⊢ (y ∈ (B ∩ D)
↔ (y ∈ B ∧ y ∈ D)) |
16 | 14, 15 | anbi12i 678 |
. . . 4
⊢ ((x ∈ (A ∩ C) ∧ y ∈ (B ∩
D)) ↔ ((x ∈ A ∧ x ∈ C) ∧ (y ∈ B ∧ y ∈ D))) |
17 | 13, 16 | bitri 240 |
. . 3
⊢ (⟪x, y⟫
∈ ((A
∩ C) ×k
(B ∩ D)) ↔ ((x
∈ A ∧ x ∈ C) ∧ (y ∈ B ∧ y ∈ D))) |
18 | 5, 12, 17 | 3bitr4i 268 |
. 2
⊢ (⟪x, y⟫
∈ ((A
×k B) ∩
(C ×k D)) ↔ ⟪x, y⟫
∈ ((A
∩ C) ×k
(B ∩ D))) |
19 | 3, 4, 18 | eqrelkriiv 4214 |
1
⊢ ((A ×k B) ∩ (C
×k D)) = ((A ∩ C)
×k (B ∩
D)) |