New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nulel0c | GIF version |
Description: The empty set is a member of cardinal zero. (Contributed by SF, 13-Feb-2015.) |
Ref | Expression |
---|---|
nulel0c | ⊢ ∅ ∈ 0c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2353 | . 2 ⊢ ∅ = ∅ | |
2 | el0c 4422 | . 2 ⊢ (∅ ∈ 0c ↔ ∅ = ∅) | |
3 | 1, 2 | mpbir 200 | 1 ⊢ ∅ ∈ 0c |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 ∅c0 3551 0cc0c 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-0c 4378 |
This theorem is referenced by: ncfinraise 4482 ncfinlower 4484 tfin0c 4498 nulnnn 4557 tc0c 6164 ce0nnul 6178 ce0nn 6181 ce0nulnc 6185 |
Copyright terms: Public domain | W3C validator |