New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkelcnvk | GIF version |
Description: Kuratowski ordered pair membership in a Kuratowski converse. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
opkelcnvk.1 | ⊢ A ∈ V |
opkelcnvk.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
opkelcnvk | ⊢ (⟪A, B⟫ ∈ ◡kC ↔ ⟪B, A⟫ ∈ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opkelcnvk.1 | . 2 ⊢ A ∈ V | |
2 | opkelcnvk.2 | . 2 ⊢ B ∈ V | |
3 | opkelcnvkg 4250 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (⟪A, B⟫ ∈ ◡kC ↔ ⟪B, A⟫ ∈ C)) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (⟪A, B⟫ ∈ ◡kC ↔ ⟪B, A⟫ ∈ C) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 Vcvv 2860 ⟪copk 4058 ◡kccnvk 4176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-cnvk 4187 |
This theorem is referenced by: opkelimagekg 4272 cnvkxpk 4277 cnvkexg 4287 dfidk2 4314 dfuni3 4316 dfint3 4319 nncaddccl 4420 nnsucelrlem1 4425 preaddccan2lem1 4455 ltfintrilem1 4466 ncfinlowerlem1 4483 eqtfinrelk 4487 oddfinex 4505 evenodddisjlem1 4516 nnpweqlem1 4523 sfintfinlem1 4532 tfinnnlem1 4534 vfinspclt 4553 dfop2lem1 4574 dfproj12 4577 dfproj22 4578 phialllem1 4617 setconslem1 4732 setconslem2 4733 setconslem4 4735 |
Copyright terms: Public domain | W3C validator |