NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkelcok GIF version

Theorem opkelcok 4263
Description: Membership in a Kuratowski composition. (Contributed by SF, 13-Jan-2015.)
Hypotheses
Ref Expression
opkelcok.1 A V
opkelcok.2 B V
Assertion
Ref Expression
opkelcok (⟪A, B (C k D) ↔ x(⟪A, x D x, B C))
Distinct variable groups:   x,A   x,B   x,C   x,D

Proof of Theorem opkelcok
StepHypRef Expression
1 opkelcok.1 . 2 A V
2 opkelcok.2 . 2 B V
3 opkelcokg 4262 . 2 ((A V B V) → (⟪A, B (C k D) ↔ x(⟪A, x D x, B C)))
41, 2, 3mp2an 653 1 (⟪A, B (C k D) ↔ x(⟪A, x D x, B C))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   wcel 1710  Vcvv 2860  copk 4058   k ccomk 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191
This theorem is referenced by:  imacok  4283  dfnnc2  4396  nnsucelrlem1  4425  dfop2lem1  4574  setconslem1  4732  setconslem2  4733  dfco1  4749
  Copyright terms: Public domain W3C validator