New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkelcok | GIF version |
Description: Membership in a Kuratowski composition. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
opkelcok.1 | ⊢ A ∈ V |
opkelcok.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
opkelcok | ⊢ (⟪A, B⟫ ∈ (C ∘k D) ↔ ∃x(⟪A, x⟫ ∈ D ∧ ⟪x, B⟫ ∈ C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opkelcok.1 | . 2 ⊢ A ∈ V | |
2 | opkelcok.2 | . 2 ⊢ B ∈ V | |
3 | opkelcokg 4262 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (⟪A, B⟫ ∈ (C ∘k D) ↔ ∃x(⟪A, x⟫ ∈ D ∧ ⟪x, B⟫ ∈ C))) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (⟪A, B⟫ ∈ (C ∘k D) ↔ ∃x(⟪A, x⟫ ∈ D ∧ ⟪x, B⟫ ∈ C)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 Vcvv 2860 ⟪copk 4058 ∘k ccomk 4181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 |
This theorem is referenced by: imacok 4283 dfnnc2 4396 nnsucelrlem1 4425 dfop2lem1 4574 setconslem1 4732 setconslem2 4733 dfco1 4749 |
Copyright terms: Public domain | W3C validator |