New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elssetkg | GIF version |
Description: Membership via the Kuratowski subset relationship. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
elssetkg | ⊢ ((A ∈ V ∧ B ∈ W) → (⟪{A}, B⟫ ∈ Sk ↔ A ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4112 | . . 3 ⊢ {A} ∈ V | |
2 | opkelssetkg 4269 | . . 3 ⊢ (({A} ∈ V ∧ B ∈ W) → (⟪{A}, B⟫ ∈ Sk ↔ {A} ⊆ B)) | |
3 | 1, 2 | mpan 651 | . 2 ⊢ (B ∈ W → (⟪{A}, B⟫ ∈ Sk ↔ {A} ⊆ B)) |
4 | snssg 3845 | . . 3 ⊢ (A ∈ V → (A ∈ B ↔ {A} ⊆ B)) | |
5 | 4 | bicomd 192 | . 2 ⊢ (A ∈ V → ({A} ⊆ B ↔ A ∈ B)) |
6 | 3, 5 | sylan9bbr 681 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (⟪{A}, B⟫ ∈ Sk ↔ A ∈ B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∈ wcel 1710 Vcvv 2860 ⊆ wss 3258 {csn 3738 ⟪copk 4058 Sk cssetk 4184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-ssetk 4194 |
This theorem is referenced by: elssetk 4271 opkelimagekg 4272 setswith 4322 |
Copyright terms: Public domain | W3C validator |