Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvratex Structured version   Visualization version   GIF version

Theorem 1cvratex 33571
Description: There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
1cvratex.b 𝐵 = (Base‘𝐾)
1cvratex.s < = (lt‘𝐾)
1cvratex.u 1 = (1.‘𝐾)
1cvratex.c 𝐶 = ( ⋖ ‘𝐾)
1cvratex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvratex ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   < ,𝑝   1 ,𝑝   𝑋,𝑝

Proof of Theorem 1cvratex
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → 𝐾 ∈ HL)
2 1cvratex.b . . . . 5 𝐵 = (Base‘𝐾)
3 1cvratex.u . . . . 5 1 = (1.‘𝐾)
4 eqid 2610 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
5 1cvratex.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
6 1cvratex.a . . . . 5 𝐴 = (Atoms‘𝐾)
72, 3, 4, 5, 61cvrco 33570 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘𝑋) ∈ 𝐴))
87biimp3a 1424 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((oc‘𝐾)‘𝑋) ∈ 𝐴)
9 eqid 2610 . . . 4 (join‘𝐾) = (join‘𝐾)
109, 5, 62dim 33568 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐴) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
111, 8, 10syl2anc 691 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
12 simp11 1084 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 hlop 33461 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1412, 13syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ OP)
15 hllat 33462 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1612, 15syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Lat)
17 simp12 1085 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑋𝐵)
182, 4opoccl 33293 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
1914, 17, 18syl2anc 691 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
20 simp2l 1080 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐴)
212, 6atbase 33388 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
2220, 21syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐵)
232, 9latjcl 16823 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑞𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
2416, 19, 22, 23syl3anc 1318 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
252, 4opoccl 33293 . . . . . . 7 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
2614, 24, 25syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
27 simp2r 1081 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐴)
282, 6atbase 33388 . . . . . . . . . . . . 13 (𝑟𝐴𝑟𝐵)
2927, 28syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐵)
302, 9latjcl 16823 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵𝑟𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
3116, 24, 29, 30syl3anc 1318 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
322, 4opoccl 33293 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
3314, 31, 32syl2anc 691 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
34 eqid 2610 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
35 eqid 2610 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
362, 34, 35op0le 33285 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
3714, 33, 36syl2anc 691 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
38 simp3r 1083 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
39 1cvratex.s . . . . . . . . . . . 12 < = (lt‘𝐾)
402, 39, 5cvrlt 33369 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
4112, 24, 31, 38, 40syl31anc 1321 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
422, 39, 4opltcon3b 33303 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4314, 24, 31, 42syl3anc 1318 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4441, 43mpbid 221 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
45 hlpos 33464 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4612, 45syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Poset)
472, 35op0cl 33283 . . . . . . . . . . 11 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
4814, 47syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ∈ 𝐵)
492, 34, 39plelttr 16744 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5046, 48, 33, 26, 49syl13anc 1320 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5137, 44, 50mp2and 711 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5239pltne 16734 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5312, 48, 26, 52syl3anc 1318 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5451, 53mpd 15 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5554necomd 2837 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾))
562, 34, 35, 6atle 33534 . . . . . 6 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾)) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5712, 26, 55, 56syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
58 simp3l 1082 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
592, 39, 5cvrlt 33369 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
6012, 19, 24, 58, 59syl31anc 1321 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
612, 39, 4opltcon3b 33303 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6214, 19, 24, 61syl3anc 1318 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6360, 62mpbid 221 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
642, 4opococ 33294 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6514, 17, 64syl2anc 691 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6663, 65breqtrd 4604 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
6766adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
68 simpl11 1129 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
6968, 45syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ Poset)
702, 6atbase 33388 . . . . . . . . 9 (𝑝𝐴𝑝𝐵)
7170adantl 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑝𝐵)
7226adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
73 simpl12 1130 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑋𝐵)
742, 34, 39plelttr 16744 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑝𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7569, 71, 72, 73, 74syl13anc 1320 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7667, 75mpan2d 706 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → 𝑝 < 𝑋))
7776reximdva 3000 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ∃𝑝𝐴 𝑝 < 𝑋))
7857, 77mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝 < 𝑋)
79783exp 1256 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((𝑞𝐴𝑟𝐴) → ((((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋)))
8079rexlimdvv 3019 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → (∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋))
8111, 80mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897   class class class wbr 4578  cfv 5790  (class class class)co 6527  Basecbs 15644  lecple 15724  occoc 15725  Posetcpo 16712  ltcplt 16713  joincjn 16716  0.cp0 16809  1.cp1 16810  Latclat 16817  OPcops 33271  ccvr 33361  Atomscatm 33362  HLchlt 33449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-oposet 33275  df-ol 33277  df-oml 33278  df-covers 33365  df-ats 33366  df-atl 33397  df-cvlat 33421  df-hlat 33450
This theorem is referenced by:  1cvratlt  33572  lhpexlt  34100
  Copyright terms: Public domain W3C validator