MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsimpgfind Structured version   Visualization version   GIF version

Theorem ablsimpgfind 19228
Description: An abelian simple group is finite. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
ablsimpgfind.1 𝐵 = (Base‘𝐺)
ablsimpgfind.2 (𝜑𝐺 ∈ Abel)
ablsimpgfind.3 (𝜑𝐺 ∈ SimpGrp)
Assertion
Ref Expression
ablsimpgfind (𝜑𝐵 ∈ Fin)

Proof of Theorem ablsimpgfind
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → ¬ 𝐵 ∈ Fin)
21iffalsed 4475 . . 3 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) = 0)
3 ablsimpgfind.1 . . . . . . 7 𝐵 = (Base‘𝐺)
4 eqid 2820 . . . . . . 7 (0g𝐺) = (0g𝐺)
5 ablsimpgfind.3 . . . . . . 7 (𝜑𝐺 ∈ SimpGrp)
63, 4, 5simpgnideld 19217 . . . . . 6 (𝜑 → ∃𝑥𝐵 ¬ 𝑥 = (0g𝐺))
7 neqne 3023 . . . . . . 7 𝑥 = (0g𝐺) → 𝑥 ≠ (0g𝐺))
87reximi 3242 . . . . . 6 (∃𝑥𝐵 ¬ 𝑥 = (0g𝐺) → ∃𝑥𝐵 𝑥 ≠ (0g𝐺))
96, 8syl 17 . . . . 5 (𝜑 → ∃𝑥𝐵 𝑥 ≠ (0g𝐺))
10 eqid 2820 . . . . . . 7 (.g𝐺) = (.g𝐺)
11 eqid 2820 . . . . . . 7 (od‘𝐺) = (od‘𝐺)
125simpggrpd 19213 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
1312adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → 𝐺 ∈ Grp)
14 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → 𝑥𝐵)
15 ablsimpgfind.2 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Abel)
1615ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝐺 ∈ Abel)
175ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝐺 ∈ SimpGrp)
1814adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝑥𝐵)
19 simplrr 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝑥 ≠ (0g𝐺))
2019neneqd 3020 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → ¬ 𝑥 = (0g𝐺))
21 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → 𝑦𝐵)
223, 4, 10, 16, 17, 18, 20, 21ablsimpg1gend 19223 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ 𝑦𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥))
2322ex 415 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → (𝑦𝐵 → ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)))
24 simprr 771 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝑦 = (𝑛(.g𝐺)𝑥))
2512ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝐺 ∈ Grp)
26 simprl 769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝑛 ∈ ℤ)
2714adantr 483 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝑥𝐵)
283, 10, 25, 26, 27mulgcld 18245 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → (𝑛(.g𝐺)𝑥) ∈ 𝐵)
2924, 28eqeltrd 2912 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) ∧ (𝑛 ∈ ℤ ∧ 𝑦 = (𝑛(.g𝐺)𝑥))) → 𝑦𝐵)
3029rexlimdvaa 3284 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → (∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥) → 𝑦𝐵))
3123, 30impbid 214 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → (𝑦𝐵 ↔ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)))
3231abbi2dv 2949 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → 𝐵 = {𝑦 ∣ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)})
33 eqid 2820 . . . . . . . . 9 (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥))
3433rnmpt 5824 . . . . . . . 8 ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = {𝑦 ∣ ∃𝑛 ∈ ℤ 𝑦 = (𝑛(.g𝐺)𝑥)}
3532, 34syl6eqr 2873 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → 𝐵 = ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)))
363, 10, 11, 13, 14, 35cycsubggenodd 19227 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → ((od‘𝐺)‘𝑥) = if(𝐵 ∈ Fin, (♯‘𝐵), 0))
373, 4, 10, 11, 15, 5ablsimpgfindlem2 19226 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (2(.g𝐺)𝑥) = (0g𝐺)) → ((od‘𝐺)‘𝑥) ≠ 0)
383, 4, 10, 11, 15, 5ablsimpgfindlem1 19225 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ (2(.g𝐺)𝑥) ≠ (0g𝐺)) → ((od‘𝐺)‘𝑥) ≠ 0)
3937, 38pm2.61dane 3103 . . . . . . 7 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ≠ 0)
4039adantrr 715 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → ((od‘𝐺)‘𝑥) ≠ 0)
4136, 40eqnetrrd 3083 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑥 ≠ (0g𝐺))) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ≠ 0)
429, 41rexlimddv 3290 . . . 4 (𝜑 → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ≠ 0)
4342adantr 483 . . 3 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → if(𝐵 ∈ Fin, (♯‘𝐵), 0) ≠ 0)
442, 43pm2.21ddne 3100 . 2 ((𝜑 ∧ ¬ 𝐵 ∈ Fin) → ⊥)
4544efald 1557 1 (𝜑𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wfal 1548  wcel 2113  {cab 2798  wne 3015  wrex 3138  ifcif 4464  cmpt 5143  ran crn 5553  cfv 6352  (class class class)co 7153  Fincfn 8506  0cc0 10534  2c2 11690  cz 11979  chash 13688  Basecbs 16479  0gc0g 16709  Grpcgrp 18099  .gcmg 18220  odcod 18648  Abelcabl 18903  SimpGrpcsimpg 19208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-inf2 9101  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611  ax-pre-sup 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-se 5512  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-omul 8104  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-acn 9368  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-div 11295  df-nn 11636  df-2 11698  df-3 11699  df-n0 11896  df-z 11980  df-uz 12242  df-rp 12388  df-fz 12891  df-fl 13160  df-mod 13236  df-seq 13368  df-exp 13428  df-hash 13689  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-nsg 18273  df-od 18652  df-cmn 18904  df-abl 18905  df-simpg 19209
This theorem is referenced by:  ablsimpgprmd  19233
  Copyright terms: Public domain W3C validator