MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnsscmcl Structured version   Visualization version   GIF version

Theorem bnsscmcl 28645
Description: A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnsscmcl.x 𝑋 = (BaseSet‘𝑈)
bnsscmcl.d 𝐷 = (IndMet‘𝑈)
bnsscmcl.j 𝐽 = (MetOpen‘𝐷)
bnsscmcl.h 𝐻 = (SubSp‘𝑈)
bnsscmcl.y 𝑌 = (BaseSet‘𝑊)
Assertion
Ref Expression
bnsscmcl ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽)))

Proof of Theorem bnsscmcl
StepHypRef Expression
1 bnnv 28643 . . . 4 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
2 bnsscmcl.h . . . . 5 𝐻 = (SubSp‘𝑈)
32sspnv 28503 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
41, 3sylan 582 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → 𝑊 ∈ NrmCVec)
5 bnsscmcl.y . . . . 5 𝑌 = (BaseSet‘𝑊)
6 eqid 2821 . . . . 5 (IndMet‘𝑊) = (IndMet‘𝑊)
75, 6iscbn 28641 . . . 4 (𝑊 ∈ CBan ↔ (𝑊 ∈ NrmCVec ∧ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
87baib 538 . . 3 (𝑊 ∈ NrmCVec → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
94, 8syl 17 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ (IndMet‘𝑊) ∈ (CMet‘𝑌)))
10 bnsscmcl.d . . . . 5 𝐷 = (IndMet‘𝑈)
115, 10, 6, 2sspims 28516 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
121, 11sylan 582 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (IndMet‘𝑊) = (𝐷 ↾ (𝑌 × 𝑌)))
1312eleq1d 2897 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → ((IndMet‘𝑊) ∈ (CMet‘𝑌) ↔ (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)))
14 bnsscmcl.x . . . . 5 𝑋 = (BaseSet‘𝑈)
1514, 10cbncms 28642 . . . 4 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
1615adantr 483 . . 3 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → 𝐷 ∈ (CMet‘𝑋))
17 bnsscmcl.j . . . 4 𝐽 = (MetOpen‘𝐷)
1817cmetss 23919 . . 3 (𝐷 ∈ (CMet‘𝑋) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
1916, 18syl 17 . 2 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝐽)))
209, 13, 193bitrd 307 1 ((𝑈 ∈ CBan ∧ 𝑊𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   × cxp 5553  cres 5557  cfv 6355  MetOpencmopn 20535  Clsdccld 21624  CMetccmet 23857  NrmCVeccnv 28361  BaseSetcba 28363  IndMetcims 28368  SubSpcss 28498  CBanccbn 28639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-icc 12746  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-haus 21923  df-fil 22454  df-flim 22547  df-cfil 23858  df-cmet 23860  df-grpo 28270  df-gid 28271  df-ginv 28272  df-gdiv 28273  df-ablo 28322  df-vc 28336  df-nv 28369  df-va 28372  df-ba 28373  df-sm 28374  df-0v 28375  df-vs 28376  df-nmcv 28377  df-ims 28378  df-ssp 28499  df-cbn 28640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator