MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothac Structured version   Visualization version   GIF version

Theorem grothac 10252
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 9891). This can be put in a more conventional form via ween 9461 and dfac8 9561. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html 9561). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothac dom card = V

Proof of Theorem grothac
Dummy variables 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4555 . . . . . . . . . 10 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
21sseq1d 3998 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
31eleq1d 2897 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
42, 3anbi12d 632 . . . . . . . 8 (𝑥 = 𝑦 → ((𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ↔ (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢)))
54rspcva 3621 . . . . . . 7 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢))
65simpld 497 . . . . . 6 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → 𝒫 𝑦𝑢)
7 rabss 4048 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
87biimpri 230 . . . . . 6 (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢)
9 vex 3497 . . . . . . . . . 10 𝑦 ∈ V
109canth2 8670 . . . . . . . . 9 𝑦 ≺ 𝒫 𝑦
11 sdomdom 8537 . . . . . . . . 9 (𝑦 ≺ 𝒫 𝑦𝑦 ≼ 𝒫 𝑦)
1210, 11ax-mp 5 . . . . . . . 8 𝑦 ≼ 𝒫 𝑦
13 ssdomg 8555 . . . . . . . . 9 (𝑢 ∈ V → (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢))
1413elv 3499 . . . . . . . 8 (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢)
15 domtr 8562 . . . . . . . 8 ((𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦𝑢) → 𝑦𝑢)
1612, 14, 15sylancr 589 . . . . . . 7 (𝒫 𝑦𝑢𝑦𝑢)
17 vex 3497 . . . . . . . 8 𝑢 ∈ V
18 tskwe 9379 . . . . . . . 8 ((𝑢 ∈ V ∧ {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢) → 𝑢 ∈ dom card)
1917, 18mpan 688 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑢 ∈ dom card)
20 numdom 9464 . . . . . . . 8 ((𝑢 ∈ dom card ∧ 𝑦𝑢) → 𝑦 ∈ dom card)
2120expcom 416 . . . . . . 7 (𝑦𝑢 → (𝑢 ∈ dom card → 𝑦 ∈ dom card))
2216, 19, 21syl2im 40 . . . . . 6 (𝒫 𝑦𝑢 → ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑦 ∈ dom card))
236, 8, 22syl2im 40 . . . . 5 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → 𝑦 ∈ dom card))
24233impia 1113 . . . 4 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢)) → 𝑦 ∈ dom card)
25 axgroth6 10250 . . . 4 𝑢(𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
2624, 25exlimiiv 1932 . . 3 𝑦 ∈ dom card
2726, 92th 266 . 2 (𝑦 ∈ dom card ↔ 𝑦 ∈ V)
2827eqriv 2818 1 dom card = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  wss 3936  𝒫 cpw 4539   class class class wbr 5066  dom cdm 5555  cdom 8507  csdm 8508  cardccrd 9364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-groth 10245
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-wrecs 7947  df-recs 8008  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-card 9368
This theorem is referenced by:  axgroth3  10253
  Copyright terms: Public domain W3C validator