MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothac Structured version   Visualization version   GIF version

Theorem grothac 9637
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 9276). This can be put in a more conventional form via ween 8843 and dfac8 8942. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothac dom card = V

Proof of Theorem grothac
Dummy variables 𝑥 𝑦 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4152 . . . . . . . . . 10 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 𝑦)
21sseq1d 3624 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
31eleq1d 2684 . . . . . . . . 9 (𝑥 = 𝑦 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑦𝑢))
42, 3anbi12d 746 . . . . . . . 8 (𝑥 = 𝑦 → ((𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ↔ (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢)))
54rspcva 3302 . . . . . . 7 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (𝒫 𝑦𝑢 ∧ 𝒫 𝑦𝑢))
65simpld 475 . . . . . 6 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → 𝒫 𝑦𝑢)
7 rabss 3671 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢 ↔ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
87biimpri 218 . . . . . 6 (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢)
9 vex 3198 . . . . . . . . . 10 𝑦 ∈ V
109canth2 8098 . . . . . . . . 9 𝑦 ≺ 𝒫 𝑦
11 sdomdom 7968 . . . . . . . . 9 (𝑦 ≺ 𝒫 𝑦𝑦 ≼ 𝒫 𝑦)
1210, 11ax-mp 5 . . . . . . . 8 𝑦 ≼ 𝒫 𝑦
13 vex 3198 . . . . . . . . 9 𝑢 ∈ V
14 ssdomg 7986 . . . . . . . . 9 (𝑢 ∈ V → (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢))
1513, 14ax-mp 5 . . . . . . . 8 (𝒫 𝑦𝑢 → 𝒫 𝑦𝑢)
16 domtr 7994 . . . . . . . 8 ((𝑦 ≼ 𝒫 𝑦 ∧ 𝒫 𝑦𝑢) → 𝑦𝑢)
1712, 15, 16sylancr 694 . . . . . . 7 (𝒫 𝑦𝑢𝑦𝑢)
18 tskwe 8761 . . . . . . . 8 ((𝑢 ∈ V ∧ {𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢) → 𝑢 ∈ dom card)
1913, 18mpan 705 . . . . . . 7 ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑢 ∈ dom card)
20 numdom 8846 . . . . . . . 8 ((𝑢 ∈ dom card ∧ 𝑦𝑢) → 𝑦 ∈ dom card)
2120expcom 451 . . . . . . 7 (𝑦𝑢 → (𝑢 ∈ dom card → 𝑦 ∈ dom card))
2217, 19, 21syl2im 40 . . . . . 6 (𝒫 𝑦𝑢 → ({𝑥 ∈ 𝒫 𝑢𝑥𝑢} ⊆ 𝑢𝑦 ∈ dom card))
236, 8, 22syl2im 40 . . . . 5 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢)) → (∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢) → 𝑦 ∈ dom card))
24233impia 1259 . . . 4 ((𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢)) → 𝑦 ∈ dom card)
25 axgroth6 9635 . . . 4 𝑢(𝑦𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝑢) ∧ ∀𝑥 ∈ 𝒫 𝑢(𝑥𝑢𝑥𝑢))
2624, 25exlimiiv 1857 . . 3 𝑦 ∈ dom card
2726, 92th 254 . 2 (𝑦 ∈ dom card ↔ 𝑦 ∈ V)
2827eqriv 2617 1 dom card = V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  {crab 2913  Vcvv 3195  wss 3567  𝒫 cpw 4149   class class class wbr 4644  dom cdm 5104  cdom 7938  csdm 7939  cardccrd 8746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-groth 9630
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-wrecs 7392  df-recs 7453  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-card 8750
This theorem is referenced by:  axgroth3  9638
  Copyright terms: Public domain W3C validator