MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfs Structured version   Visualization version   GIF version

Theorem cantnfs 9129
Description: Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnfs (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))

Proof of Theorem cantnfs
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 eqid 2821 . . . . . 6 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
3 cantnfs.a . . . . . 6 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . . . 6 (𝜑𝐵 ∈ On)
52, 3, 4cantnfdm 9127 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
61, 5syl5eq 2868 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
76eleq2d 2898 . . 3 (𝜑 → (𝐹𝑆𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}))
8 breq1 5069 . . . 4 (𝑔 = 𝐹 → (𝑔 finSupp ∅ ↔ 𝐹 finSupp ∅))
98elrab 3680 . . 3 (𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↔ (𝐹 ∈ (𝐴m 𝐵) ∧ 𝐹 finSupp ∅))
107, 9syl6bb 289 . 2 (𝜑 → (𝐹𝑆 ↔ (𝐹 ∈ (𝐴m 𝐵) ∧ 𝐹 finSupp ∅)))
113, 4elmapd 8420 . . 3 (𝜑 → (𝐹 ∈ (𝐴m 𝐵) ↔ 𝐹:𝐵𝐴))
1211anbi1d 631 . 2 (𝜑 → ((𝐹 ∈ (𝐴m 𝐵) ∧ 𝐹 finSupp ∅) ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
1310, 12bitrd 281 1 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3142  c0 4291   class class class wbr 5066  dom cdm 5555  Oncon0 6191  wf 6351  (class class class)co 7156  m cmap 8406   finSupp cfsupp 8833   CNF ccnf 9124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-seqom 8084  df-map 8408  df-cnf 9125
This theorem is referenced by:  cantnfcl  9130  cantnfle  9134  cantnflt  9135  cantnff  9137  cantnf0  9138  cantnfrescl  9139  cantnfp1lem1  9141  cantnfp1lem2  9142  cantnfp1lem3  9143  cantnfp1  9144  oemapvali  9147  cantnflem1a  9148  cantnflem1b  9149  cantnflem1c  9150  cantnflem1d  9151  cantnflem1  9152  cantnflem3  9154  cantnf  9156  cnfcomlem  9162  cnfcom  9163  cnfcom2lem  9164  cnfcom3lem  9166  cnfcom3  9167
  Copyright terms: Public domain W3C validator