Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemi1 Structured version   Visualization version   GIF version

Theorem cdlemi1 37969
Description: Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.)
Hypotheses
Ref Expression
cdlemi.b 𝐵 = (Base‘𝐾)
cdlemi.l = (le‘𝐾)
cdlemi.j = (join‘𝐾)
cdlemi.m = (meet‘𝐾)
cdlemi.a 𝐴 = (Atoms‘𝐾)
cdlemi.h 𝐻 = (LHyp‘𝐾)
cdlemi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemi.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemi.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemi1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))

Proof of Theorem cdlemi1
StepHypRef Expression
1 cdlemi.b . 2 𝐵 = (Base‘𝐾)
2 cdlemi.l . 2 = (le‘𝐾)
3 simp1l 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
43hllatd 36515 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
5 simp1 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp2l 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑈𝐸)
7 simp2r 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
8 cdlemi.h . . . . 5 𝐻 = (LHyp‘𝐾)
9 cdlemi.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 cdlemi.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
118, 9, 10tendocl 37918 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑈𝐺) ∈ 𝑇)
125, 6, 7, 11syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑈𝐺) ∈ 𝑇)
13 simp3l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
14 cdlemi.a . . . . 5 𝐴 = (Atoms‘𝐾)
151, 14atbase 36440 . . . 4 (𝑃𝐴𝑃𝐵)
1613, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐵)
171, 8, 9ltrncl 37276 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇𝑃𝐵) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
185, 12, 16, 17syl3anc 1367 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) ∈ 𝐵)
19 cdlemi.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
201, 8, 9, 19trlcl 37315 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
215, 12, 20syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) ∈ 𝐵)
22 cdlemi.j . . . 4 = (join‘𝐾)
231, 22latjcl 17661 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅‘(𝑈𝐺)) ∈ 𝐵) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
244, 16, 21, 23syl3anc 1367 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) ∈ 𝐵)
251, 8, 9, 19trlcl 37315 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
265, 7, 25syl2anc 586 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) ∈ 𝐵)
271, 22latjcl 17661 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
284, 16, 26, 27syl3anc 1367 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
291, 2, 22latlej2 17671 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
304, 16, 18, 29syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 ((𝑈𝐺)‘𝑃)))
31 cdlemi.m . . . . . . 7 = (meet‘𝐾)
322, 22, 31, 14, 8, 9, 19trlval2 37314 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐺) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3312, 32syld3an2 1407 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) = ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊))
3433oveq2d 7172 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)))
351, 22latjcl 17661 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
364, 16, 18, 35syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵)
37 simp1r 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
381, 8lhpbase 37149 . . . . . 6 (𝑊𝐻𝑊𝐵)
3937, 38syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐵)
401, 2, 22latlej1 17670 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐵) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
414, 16, 18, 40syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 (𝑃 ((𝑈𝐺)‘𝑃)))
421, 2, 22, 31, 14atmod3i1 37015 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵𝑊𝐵) ∧ 𝑃 (𝑃 ((𝑈𝐺)‘𝑃))) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
433, 13, 36, 39, 41, 42syl131anc 1379 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 ((𝑃 ((𝑈𝐺)‘𝑃)) 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)))
44 eqid 2821 . . . . . . . 8 (1.‘𝐾) = (1.‘𝐾)
452, 22, 44, 14, 8lhpjat2 37172 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
46453adant2 1127 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
4746oveq2d 7172 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)))
48 hlol 36512 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
493, 48syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ OL)
501, 31, 44olm11 36378 . . . . . 6 ((𝐾 ∈ OL ∧ (𝑃 ((𝑈𝐺)‘𝑃)) ∈ 𝐵) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5149, 36, 50syl2anc 586 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (1.‘𝐾)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5247, 51eqtrd 2856 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑃 ((𝑈𝐺)‘𝑃)) (𝑃 𝑊)) = (𝑃 ((𝑈𝐺)‘𝑃)))
5334, 43, 523eqtrd 2860 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) = (𝑃 ((𝑈𝐺)‘𝑃)))
5430, 53breqtrrd 5094 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅‘(𝑈𝐺))))
552, 8, 9, 19, 10tendotp 37912 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝐺𝑇) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
565, 6, 7, 55syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅‘(𝑈𝐺)) (𝑅𝐺))
571, 2, 22latjlej2 17676 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅‘(𝑈𝐺)) ∈ 𝐵 ∧ (𝑅𝐺) ∈ 𝐵𝑃𝐵)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
584, 21, 26, 16, 57syl13anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑅‘(𝑈𝐺)) (𝑅𝐺) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺))))
5956, 58mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅‘(𝑈𝐺))) (𝑃 (𝑅𝐺)))
601, 2, 4, 18, 24, 28, 54, 59lattrd 17668 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  1.cp1 17648  Latclat 17655  OLcol 36325  Atomscatm 36414  HLchlt 36501  LHypclh 37135  LTrncltrn 37252  trLctrl 37309  TEndoctendo 37903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310  df-tendo 37906
This theorem is referenced by:  cdlemi2  37970  cdlemi  37971
  Copyright terms: Public domain W3C validator