HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem1 Structured version   Visualization version   GIF version

Theorem chscllem1 28624
Description: Lemma for chscl 28628. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
Assertion
Ref Expression
chscllem1 (𝜑𝐹:ℕ⟶𝐴)
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢
Allowed substitution hints:   𝜑(𝑢)   𝐹(𝑢,𝑛)

Proof of Theorem chscllem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . 4 ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛))
2 chscl.1 . . . . . 6 (𝜑𝐴C )
32adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴C )
4 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
54ffvelrnda 6399 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + 𝐵))
6 chscl.2 . . . . . . . . . 10 (𝜑𝐵C )
7 chsh 28209 . . . . . . . . . 10 (𝐵C𝐵S )
86, 7syl 17 . . . . . . . . 9 (𝜑𝐵S )
9 chsh 28209 . . . . . . . . . . 11 (𝐴C𝐴S )
102, 9syl 17 . . . . . . . . . 10 (𝜑𝐴S )
11 shocsh 28271 . . . . . . . . . 10 (𝐴S → (⊥‘𝐴) ∈ S )
1210, 11syl 17 . . . . . . . . 9 (𝜑 → (⊥‘𝐴) ∈ S )
13 chscl.3 . . . . . . . . 9 (𝜑𝐵 ⊆ (⊥‘𝐴))
14 shless 28346 . . . . . . . . 9 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
158, 12, 10, 13, 14syl31anc 1369 . . . . . . . 8 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
16 shscom 28306 . . . . . . . . 9 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
1710, 8, 16syl2anc 694 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
18 shscom 28306 . . . . . . . . 9 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
1910, 12, 18syl2anc 694 . . . . . . . 8 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2015, 17, 193sstr4d 3681 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
2120sselda 3636 . . . . . 6 ((𝜑 ∧ (𝐻𝑛) ∈ (𝐴 + 𝐵)) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
225, 21syldan 486 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴)))
23 pjpreeq 28385 . . . . 5 ((𝐴C ∧ (𝐻𝑛) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
243, 22, 23syl2anc 694 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑛)) ↔ (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥))))
251, 24mpbii 223 . . 3 ((𝜑𝑛 ∈ ℕ) → (((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴 ∧ ∃𝑥 ∈ (⊥‘𝐴)(𝐻𝑛) = (((proj𝐴)‘(𝐻𝑛)) + 𝑥)))
2625simpld 474 . 2 ((𝜑𝑛 ∈ ℕ) → ((proj𝐴)‘(𝐻𝑛)) ∈ 𝐴)
27 chscl.6 . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
2826, 27fmptd 6425 1 (𝜑𝐹:ℕ⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wrex 2942  wss 3607   class class class wbr 4685  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  cn 11058   + cva 27905  𝑣 chli 27912   S csh 27913   C cch 27914  cort 27915   + cph 27916  projcpjh 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his2 28068  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-grpo 27475  df-ablo 27527  df-hvsub 27956  df-sh 28192  df-ch 28206  df-oc 28237  df-ch0 28238  df-shs 28295  df-pjh 28382
This theorem is referenced by:  chscllem2  28625  chscllem3  28626  chscllem4  28627
  Copyright terms: Public domain W3C validator