Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrexch Structured version   Visualization version   GIF version

Theorem cvrexch 33523
Description: A Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (cvexchi 28414 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
cvrexch.b 𝐵 = (Base‘𝐾)
cvrexch.j = (join‘𝐾)
cvrexch.m = (meet‘𝐾)
cvrexch.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrexch ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))

Proof of Theorem cvrexch
StepHypRef Expression
1 cvrexch.b . . 3 𝐵 = (Base‘𝐾)
2 cvrexch.j . . 3 = (join‘𝐾)
3 cvrexch.m . . 3 = (meet‘𝐾)
4 cvrexch.c . . 3 𝐶 = ( ⋖ ‘𝐾)
51, 2, 3, 4cvrexchlem 33522 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
6 simp1 1053 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
7 hlop 33466 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
873ad2ant1 1074 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
9 simp3 1055 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
10 eqid 2605 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
111, 10opoccl 33298 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
128, 9, 11syl2anc 690 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑌) ∈ 𝐵)
13 simp2 1054 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
141, 10opoccl 33298 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
158, 13, 14syl2anc 690 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
161, 2, 3, 4cvrexchlem 33522 . . . . 5 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
176, 12, 15, 16syl3anc 1317 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
18 hlol 33465 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
191, 2, 3, 10oldmj1 33325 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2018, 19syl3an1 1350 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
21 hllat 33467 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
22213ad2ant1 1074 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
231, 3latmcom 16840 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2422, 15, 12, 23syl3anc 1317 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2520, 24eqtrd 2639 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
2625breq1d 4583 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) ↔ (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))𝐶((oc‘𝐾)‘𝑋)))
271, 2, 3, 10oldmm1 33321 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
2818, 27syl3an1 1350 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)))
291, 2latjcom 16824 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ ((oc‘𝐾)‘𝑌) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3022, 15, 12, 29syl3anc 1317 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑋) ((oc‘𝐾)‘𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3128, 30eqtrd 2639 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((oc‘𝐾)‘(𝑋 𝑌)) = (((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋)))
3231breq2d 4585 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌)) ↔ ((oc‘𝐾)‘𝑌)𝐶(((oc‘𝐾)‘𝑌) ((oc‘𝐾)‘𝑋))))
3317, 26, 323imtr4d 281 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋) → ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
341, 2latjcl 16816 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3521, 34syl3an1 1350 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
361, 10, 4cvrcon3b 33381 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
378, 13, 35, 36syl3anc 1317 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) ↔ ((oc‘𝐾)‘(𝑋 𝑌))𝐶((oc‘𝐾)‘𝑋)))
381, 3latmcl 16817 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
3921, 38syl3an1 1350 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
401, 10, 4cvrcon3b 33381 . . . 4 ((𝐾 ∈ OP ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
418, 39, 9, 40syl3anc 1317 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌 ↔ ((oc‘𝐾)‘𝑌)𝐶((oc‘𝐾)‘(𝑋 𝑌))))
4233, 37, 413imtr4d 281 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶(𝑋 𝑌) → (𝑋 𝑌)𝐶𝑌))
435, 42impbid 200 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  w3a 1030   = wceq 1474  wcel 1975   class class class wbr 4573  cfv 5786  (class class class)co 6523  Basecbs 15637  occoc 15718  joincjn 16709  meetcmee 16710  Latclat 16810  OPcops 33276  OLcol 33278  ccvr 33366  HLchlt 33454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-preset 16693  df-poset 16711  df-plt 16723  df-lub 16739  df-glb 16740  df-join 16741  df-meet 16742  df-p0 16804  df-lat 16811  df-clat 16873  df-oposet 33280  df-ol 33282  df-oml 33283  df-covers 33370  df-ats 33371  df-atl 33402  df-cvlat 33426  df-hlat 33455
This theorem is referenced by:  cvrat3  33545  2lplnmN  33662  2llnmj  33663  2llnm2N  33671  2lplnm2N  33724  2lplnmj  33725  lhpmcvr  34126
  Copyright terms: Public domain W3C validator