Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochsat0 Structured version   Visualization version   GIF version

Theorem dochsat0 37240
Description: The orthocomplement of a kernel is either an atom or zero. (Contributed by NM, 29-Jan-2015.)
Hypotheses
Ref Expression
dochsat0.h 𝐻 = (LHyp‘𝐾)
dochsat0.o = ((ocH‘𝐾)‘𝑊)
dochsat0.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochsat0.z 0 = (0g𝑈)
dochsat0.a 𝐴 = (LSAtoms‘𝑈)
dochsat0.f 𝐹 = (LFnl‘𝑈)
dochsat0.l 𝐿 = (LKer‘𝑈)
dochsat0.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dochsat0.g (𝜑𝐺𝐹)
Assertion
Ref Expression
dochsat0 (𝜑 → (( ‘(𝐿𝐺)) ∈ 𝐴 ∨ ( ‘(𝐿𝐺)) = { 0 }))

Proof of Theorem dochsat0
StepHypRef Expression
1 dochsat0.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dochsat0.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
3 dochsat0.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 dochsat0.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
5 dochsat0.f . . . . 5 𝐹 = (LFnl‘𝑈)
6 dochsat0.l . . . . 5 𝐿 = (LKer‘𝑈)
7 dochsat0.z . . . . 5 0 = (0g𝑈)
8 dochsat0.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 dochsat0.g . . . . 5 (𝜑𝐺𝐹)
101, 2, 3, 4, 5, 6, 7, 8, 9dochkrsat 37238 . . . 4 (𝜑 → (( ‘(𝐿𝐺)) ≠ { 0 } ↔ ( ‘(𝐿𝐺)) ∈ 𝐴))
1110biimpd 219 . . 3 (𝜑 → (( ‘(𝐿𝐺)) ≠ { 0 } → ( ‘(𝐿𝐺)) ∈ 𝐴))
1211necon1bd 2942 . 2 (𝜑 → (¬ ( ‘(𝐿𝐺)) ∈ 𝐴 → ( ‘(𝐿𝐺)) = { 0 }))
1312orrd 392 1 (𝜑 → (( ‘(𝐿𝐺)) ∈ 𝐴 ∨ ( ‘(𝐿𝐺)) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1624  wcel 2131  wne 2924  {csn 4313  cfv 6041  0gc0g 16294  LSAtomsclsa 34756  LFnlclfn 34839  LKerclk 34867  HLchlt 35132  LHypclh 35765  DVecHcdvh 36861  ocHcoch 37130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-riotaBAD 34734
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-tpos 7513  df-undef 7560  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-sca 16151  df-vsca 16152  df-0g 16296  df-preset 17121  df-poset 17139  df-plt 17151  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-p0 17232  df-p1 17233  df-lat 17239  df-clat 17301  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-grp 17618  df-minusg 17619  df-sbg 17620  df-subg 17784  df-cntz 17942  df-lsm 18243  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-oppr 18815  df-dvdsr 18833  df-unit 18834  df-invr 18864  df-dvr 18875  df-drng 18943  df-lmod 19059  df-lss 19127  df-lsp 19166  df-lvec 19297  df-lsatoms 34758  df-lshyp 34759  df-lfl 34840  df-lkr 34868  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-llines 35279  df-lplanes 35280  df-lvols 35281  df-lines 35282  df-psubsp 35284  df-pmap 35285  df-padd 35577  df-lhyp 35769  df-laut 35770  df-ldil 35885  df-ltrn 35886  df-trl 35941  df-tgrp 36525  df-tendo 36537  df-edring 36539  df-dveca 36785  df-disoa 36812  df-dvech 36862  df-dib 36922  df-dic 36956  df-dih 37012  df-doch 37131  df-djh 37178
This theorem is referenced by:  dochkrsm  37241  mapdval2N  37413  mapdrvallem2  37428
  Copyright terms: Public domain W3C validator