Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpadd3 Structured version   Visualization version   GIF version

 Description: Addition with two decimals. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
dpmul.a 𝐴 ∈ ℕ0
dpmul.b 𝐵 ∈ ℕ0
dpmul.c 𝐶 ∈ ℕ0
dpmul.d 𝐷 ∈ ℕ0
dpmul.e 𝐸 ∈ ℕ0
dpmul.g 𝐺 ∈ ℕ0
dpadd3.1 (𝐴𝐵𝐶 + 𝐷𝐸𝐹) = 𝐺𝐻𝐼
Assertion
Ref Expression
dpadd3 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)

StepHypRef Expression
1 dpmul.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul.b . . . . . . . 8 𝐵 ∈ ℕ0
32nn0rei 11341 . . . . . . 7 𝐵 ∈ ℝ
4 dpmul.c . . . . . . . 8 𝐶 ∈ ℕ0
54nn0rei 11341 . . . . . . 7 𝐶 ∈ ℝ
6 dp2cl 29715 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
73, 5, 6mp2an 708 . . . . . 6 𝐵𝐶 ∈ ℝ
8 dpcl 29726 . . . . . 6 ((𝐴 ∈ ℕ0𝐵𝐶 ∈ ℝ) → (𝐴.𝐵𝐶) ∈ ℝ)
91, 7, 8mp2an 708 . . . . 5 (𝐴.𝐵𝐶) ∈ ℝ
109recni 10090 . . . 4 (𝐴.𝐵𝐶) ∈ ℂ
11 dpmul.d . . . . . 6 𝐷 ∈ ℕ0
12 dpmul.e . . . . . . . 8 𝐸 ∈ ℕ0
1312nn0rei 11341 . . . . . . 7 𝐸 ∈ ℝ
14 dpadd3.f . . . . . . . 8 𝐹 ∈ ℕ0
1514nn0rei 11341 . . . . . . 7 𝐹 ∈ ℝ
16 dp2cl 29715 . . . . . . 7 ((𝐸 ∈ ℝ ∧ 𝐹 ∈ ℝ) → 𝐸𝐹 ∈ ℝ)
1713, 15, 16mp2an 708 . . . . . 6 𝐸𝐹 ∈ ℝ
18 dpcl 29726 . . . . . 6 ((𝐷 ∈ ℕ0𝐸𝐹 ∈ ℝ) → (𝐷.𝐸𝐹) ∈ ℝ)
1911, 17, 18mp2an 708 . . . . 5 (𝐷.𝐸𝐹) ∈ ℝ
2019recni 10090 . . . 4 (𝐷.𝐸𝐹) ∈ ℂ
2110, 20addcli 10082 . . 3 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ
22 dpmul.g . . . . 5 𝐺 ∈ ℕ0
23 dpadd3.h . . . . . . 7 𝐻 ∈ ℕ0
2423nn0rei 11341 . . . . . 6 𝐻 ∈ ℝ
25 dpadd3.i . . . . . . 7 𝐼 ∈ ℕ0
2625nn0rei 11341 . . . . . 6 𝐼 ∈ ℝ
27 dp2cl 29715 . . . . . 6 ((𝐻 ∈ ℝ ∧ 𝐼 ∈ ℝ) → 𝐻𝐼 ∈ ℝ)
2824, 26, 27mp2an 708 . . . . 5 𝐻𝐼 ∈ ℝ
29 dpcl 29726 . . . . 5 ((𝐺 ∈ ℕ0𝐻𝐼 ∈ ℝ) → (𝐺.𝐻𝐼) ∈ ℝ)
3022, 28, 29mp2an 708 . . . 4 (𝐺.𝐻𝐼) ∈ ℝ
3130recni 10090 . . 3 (𝐺.𝐻𝐼) ∈ ℂ
32 10nn 11552 . . . . . 6 10 ∈ ℕ
3332decnncl2 11563 . . . . 5 100 ∈ ℕ
3433nncni 11068 . . . 4 100 ∈ ℂ
3533nnne0i 11093 . . . 4 100 ≠ 0
3634, 35pm3.2i 470 . . 3 (100 ∈ ℂ ∧ 100 ≠ 0)
3721, 31, 363pm3.2i 1259 . 2 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0))
3810, 20, 34adddiri 10089 . . 3 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100))
39 dpadd3.1 . . . 4 (𝐴𝐵𝐶 + 𝐷𝐸𝐹) = 𝐺𝐻𝐼
401, 2, 5dpmul100 29733 . . . . 5 ((𝐴.𝐵𝐶) · 100) = 𝐴𝐵𝐶
4111, 12, 15dpmul100 29733 . . . . 5 ((𝐷.𝐸𝐹) · 100) = 𝐷𝐸𝐹
4240, 41oveq12i 6702 . . . 4 (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100)) = (𝐴𝐵𝐶 + 𝐷𝐸𝐹)
4322, 23, 26dpmul100 29733 . . . 4 ((𝐺.𝐻𝐼) · 100) = 𝐺𝐻𝐼
4439, 42, 433eqtr4i 2683 . . 3 (((𝐴.𝐵𝐶) · 100) + ((𝐷.𝐸𝐹) · 100)) = ((𝐺.𝐻𝐼) · 100)
4538, 44eqtri 2673 . 2 (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100)
46 mulcan2 10703 . . 3 ((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) → ((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100) ↔ ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)))
4746biimpa 500 . 2 (((((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) ∈ ℂ ∧ (𝐺.𝐻𝐼) ∈ ℂ ∧ (100 ∈ ℂ ∧ 100 ≠ 0)) ∧ (((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) · 100) = ((𝐺.𝐻𝐼) · 100)) → ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼))
4837, 45, 47mp2an 708 1 ((𝐴.𝐵𝐶) + (𝐷.𝐸𝐹)) = (𝐺.𝐻𝐼)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  ℕ0cn0 11330  ;cdc 11531  _cdp2 29705  .cdp 29723 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-dec 11532  df-dp2 29706  df-dp 29724 This theorem is referenced by:  1mhdrd  29752  hgt750lem2  30858
 Copyright terms: Public domain W3C validator