MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  10nn Structured version   Visualization version   GIF version

Theorem 10nn 11343
Description: 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
10nn 10 ∈ ℕ

Proof of Theorem 10nn
StepHypRef Expression
1 9p1e10 11325 . 2 (9 + 1) = 10
2 9nn 11036 . . 3 9 ∈ ℕ
3 peano2nn 10876 . . 3 (9 ∈ ℕ → (9 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (9 + 1) ∈ ℕ
51, 4eqeltrri 2681 1 10 ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 1976  (class class class)co 6524  0cc0 9789  1c1 9790   + caddc 9792  cn 10864  9c9 10921  cdc 11322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-ov 6527  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-ltxr 9932  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-dec 11323
This theorem is referenced by:  10pos  11344  10re  11346  decnncl2  11354  declt  11359  decltc  11361  declti  11375  dec10p  11382  3dvds  14833  163prm  15613  631prm  15615  plendx  15813  pleid  15815  otpsstr  15817  ressle  15825  odrngstr  15832  imasvalstr  15878  isposix  16723  ipostr  16919  cnfldstr  19512  bclbnd  24719  ex-prmo  26471  oppgle  28787  rmydioph  36399  1t10e1p1e11  39739  257prm  39813  127prm  39855  3exp4mod41  39873  41prothprmlem1  39874  bgoldbtbndlem1  40023  bgoldbachlt  40029  tgblthelfgott  40031  tgoldbachlt  40032
  Copyright terms: Public domain W3C validator