![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efginvrel1 | Structured version Visualization version GIF version |
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
efgval.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) |
efgval.r | ⊢ ∼ = ( ~FG ‘𝐼) |
efgval2.m | ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) |
efgval2.t | ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
Ref | Expression |
---|---|
efginvrel1 | ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efgval.w | . . . . . . . . . 10 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2𝑜)) | |
2 | fviss 6418 | . . . . . . . . . 10 ⊢ ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜) | |
3 | 1, 2 | eqsstri 3776 | . . . . . . . . 9 ⊢ 𝑊 ⊆ Word (𝐼 × 2𝑜) |
4 | 3 | sseli 3740 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴 ∈ Word (𝐼 × 2𝑜)) |
5 | revcl 13710 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2𝑜) → (reverse‘𝐴) ∈ Word (𝐼 × 2𝑜)) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2𝑜)) |
7 | efgval2.m | . . . . . . . 8 ⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
8 | 7 | efgmf 18326 | . . . . . . 7 ⊢ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜) |
9 | revco 13780 | . . . . . . 7 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2𝑜) ∧ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) | |
10 | 6, 8, 9 | sylancl 697 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴)))) |
11 | revrev 13716 | . . . . . . . 8 ⊢ (𝐴 ∈ Word (𝐼 × 2𝑜) → (reverse‘(reverse‘𝐴)) = 𝐴) | |
12 | 4, 11 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴) |
13 | 12 | coeq2d 5440 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
14 | 10, 13 | eqtr3d 2796 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀 ∘ 𝐴)) |
15 | 14 | coeq2d 5440 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀 ∘ 𝐴))) |
16 | wrdf 13496 | . . . . . . . . 9 ⊢ (𝐴 ∈ Word (𝐼 × 2𝑜) → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2𝑜)) | |
17 | 4, 16 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑊 → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2𝑜)) |
18 | 17 | ffvelrnda 6522 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝐴‘𝑐) ∈ (𝐼 × 2𝑜)) |
19 | 7 | efgmnvl 18327 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2𝑜) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝑀‘(𝐴‘𝑐))) = (𝐴‘𝑐)) |
21 | 20 | mpteq2dva 4896 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐)))) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
22 | 8 | ffvelrni 6521 | . . . . . . 7 ⊢ ((𝐴‘𝑐) ∈ (𝐼 × 2𝑜) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2𝑜)) |
23 | 18, 22 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑊 ∧ 𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝐴‘𝑐)) ∈ (𝐼 × 2𝑜)) |
24 | fcompt 6563 | . . . . . . 7 ⊢ ((𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜) ∧ 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2𝑜)) → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) | |
25 | 8, 17, 24 | sylancr 698 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ 𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴‘𝑐)))) |
26 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑊 → 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) |
27 | 26 | feqmptd 6411 | . . . . . 6 ⊢ (𝐴 ∈ 𝑊 → 𝑀 = (𝑎 ∈ (𝐼 × 2𝑜) ↦ (𝑀‘𝑎))) |
28 | fveq2 6352 | . . . . . 6 ⊢ (𝑎 = (𝑀‘(𝐴‘𝑐)) → (𝑀‘𝑎) = (𝑀‘(𝑀‘(𝐴‘𝑐)))) | |
29 | 23, 25, 27, 28 | fmptco 6559 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴‘𝑐))))) |
30 | 17 | feqmptd 6411 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → 𝐴 = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴‘𝑐))) |
31 | 21, 29, 30 | 3eqtr4d 2804 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (𝑀 ∘ 𝐴)) = 𝐴) |
32 | 15, 31 | eqtrd 2794 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴) |
33 | 32 | oveq2d 6829 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴)) |
34 | wrdco 13777 | . . . . 5 ⊢ (((reverse‘𝐴) ∈ Word (𝐼 × 2𝑜) ∧ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2𝑜)) | |
35 | 6, 8, 34 | sylancl 697 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2𝑜)) |
36 | 1 | efgrcl 18328 | . . . . 5 ⊢ (𝐴 ∈ 𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜))) |
37 | 36 | simprd 482 | . . . 4 ⊢ (𝐴 ∈ 𝑊 → 𝑊 = Word (𝐼 × 2𝑜)) |
38 | 35, 37 | eleqtrrd 2842 | . . 3 ⊢ (𝐴 ∈ 𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊) |
39 | efgval.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
40 | efgval2.t | . . . 4 ⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | |
41 | 1, 39, 7, 40 | efginvrel2 18340 | . . 3 ⊢ ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
42 | 38, 41 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∼ ∅) |
43 | 33, 42 | eqbrtrrd 4828 | 1 ⊢ (𝐴 ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∼ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∖ cdif 3712 ∅c0 4058 〈cop 4327 〈cotp 4329 class class class wbr 4804 ↦ cmpt 4881 I cid 5173 × cxp 5264 ∘ ccom 5270 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 1𝑜c1o 7722 2𝑜c2o 7723 0cc0 10128 ...cfz 12519 ..^cfzo 12659 ♯chash 13311 Word cword 13477 ++ cconcat 13479 splice csplice 13482 reversecreverse 13483 〈“cs2 13786 ~FG cefg 18319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-ot 4330 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-ec 7913 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-xnn0 11556 df-z 11570 df-uz 11880 df-fz 12520 df-fzo 12660 df-hash 13312 df-word 13485 df-lsw 13486 df-concat 13487 df-s1 13488 df-substr 13489 df-splice 13490 df-reverse 13491 df-s2 13793 df-efg 18322 |
This theorem is referenced by: frgp0 18373 |
Copyright terms: Public domain | W3C validator |