MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel1 Structured version   Visualization version   GIF version

Theorem efginvrel1 18341
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efginvrel1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efginvrel1
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 fviss 6418 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
31, 2eqsstri 3776 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2𝑜)
43sseli 3740 . . . . . . . 8 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2𝑜))
5 revcl 13710 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2𝑜) → (reverse‘𝐴) ∈ Word (𝐼 × 2𝑜))
64, 5syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2𝑜))
7 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
87efgmf 18326 . . . . . . 7 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)
9 revco 13780 . . . . . . 7 (((reverse‘𝐴) ∈ Word (𝐼 × 2𝑜) ∧ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
106, 8, 9sylancl 697 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
11 revrev 13716 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2𝑜) → (reverse‘(reverse‘𝐴)) = 𝐴)
124, 11syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴)
1312coeq2d 5440 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀𝐴))
1410, 13eqtr3d 2796 . . . . 5 (𝐴𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀𝐴))
1514coeq2d 5440 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀𝐴)))
16 wrdf 13496 . . . . . . . . 9 (𝐴 ∈ Word (𝐼 × 2𝑜) → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2𝑜))
174, 16syl 17 . . . . . . . 8 (𝐴𝑊𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2𝑜))
1817ffvelrnda 6522 . . . . . . 7 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝐴𝑐) ∈ (𝐼 × 2𝑜))
197efgmnvl 18327 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2𝑜) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2018, 19syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2120mpteq2dva 4896 . . . . 5 (𝐴𝑊 → (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴𝑐)))
228ffvelrni 6521 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2𝑜) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2𝑜))
2318, 22syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2𝑜))
24 fcompt 6563 . . . . . . 7 ((𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜) ∧ 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2𝑜)) → (𝑀𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
258, 17, 24sylancr 698 . . . . . 6 (𝐴𝑊 → (𝑀𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
268a1i 11 . . . . . . 7 (𝐴𝑊𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜))
2726feqmptd 6411 . . . . . 6 (𝐴𝑊𝑀 = (𝑎 ∈ (𝐼 × 2𝑜) ↦ (𝑀𝑎)))
28 fveq2 6352 . . . . . 6 (𝑎 = (𝑀‘(𝐴𝑐)) → (𝑀𝑎) = (𝑀‘(𝑀‘(𝐴𝑐))))
2923, 25, 27, 28fmptco 6559 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))))
3017feqmptd 6411 . . . . 5 (𝐴𝑊𝐴 = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴𝑐)))
3121, 29, 303eqtr4d 2804 . . . 4 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = 𝐴)
3215, 31eqtrd 2794 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴)
3332oveq2d 6829 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴))
34 wrdco 13777 . . . . 5 (((reverse‘𝐴) ∈ Word (𝐼 × 2𝑜) ∧ 𝑀:(𝐼 × 2𝑜)⟶(𝐼 × 2𝑜)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2𝑜))
356, 8, 34sylancl 697 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2𝑜))
361efgrcl 18328 . . . . 5 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
3736simprd 482 . . . 4 (𝐴𝑊𝑊 = Word (𝐼 × 2𝑜))
3835, 37eleqtrrd 2842 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
39 efgval.r . . . 4 = ( ~FG𝐼)
40 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
411, 39, 7, 40efginvrel2 18340 . . 3 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4238, 41syl 17 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4333, 42eqbrtrrd 4828 1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cdif 3712  c0 4058  cop 4327  cotp 4329   class class class wbr 4804  cmpt 4881   I cid 5173   × cxp 5264  ccom 5270  wf 6045  cfv 6049  (class class class)co 6813  cmpt2 6815  1𝑜c1o 7722  2𝑜c2o 7723  0cc0 10128  ...cfz 12519  ..^cfzo 12659  chash 13311  Word cword 13477   ++ cconcat 13479   splice csplice 13482  reversecreverse 13483  ⟨“cs2 13786   ~FG cefg 18319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-ec 7913  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-s1 13488  df-substr 13489  df-splice 13490  df-reverse 13491  df-s2 13793  df-efg 18322
This theorem is referenced by:  frgp0  18373
  Copyright terms: Public domain W3C validator