MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel1 Structured version   Visualization version   GIF version

Theorem efginvrel1 18854
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efginvrel1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efginvrel1
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . . 10 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6741 . . . . . . . . . 10 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 4001 . . . . . . . . 9 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 3963 . . . . . . . 8 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 revcl 14123 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
64, 5syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘𝐴) ∈ Word (𝐼 × 2o))
7 efgval2.m . . . . . . . 8 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
87efgmf 18839 . . . . . . 7 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
9 revco 14196 . . . . . . 7 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
106, 8, 9sylancl 588 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (reverse‘(𝑀 ∘ (reverse‘𝐴))))
11 revrev 14129 . . . . . . . 8 (𝐴 ∈ Word (𝐼 × 2o) → (reverse‘(reverse‘𝐴)) = 𝐴)
124, 11syl 17 . . . . . . 7 (𝐴𝑊 → (reverse‘(reverse‘𝐴)) = 𝐴)
1312coeq2d 5733 . . . . . 6 (𝐴𝑊 → (𝑀 ∘ (reverse‘(reverse‘𝐴))) = (𝑀𝐴))
1410, 13eqtr3d 2858 . . . . 5 (𝐴𝑊 → (reverse‘(𝑀 ∘ (reverse‘𝐴))) = (𝑀𝐴))
1514coeq2d 5733 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = (𝑀 ∘ (𝑀𝐴)))
16 wrdf 13867 . . . . . . . . 9 (𝐴 ∈ Word (𝐼 × 2o) → 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o))
174, 16syl 17 . . . . . . . 8 (𝐴𝑊𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o))
1817ffvelrnda 6851 . . . . . . 7 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝐴𝑐) ∈ (𝐼 × 2o))
197efgmnvl 18840 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2018, 19syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝑀‘(𝐴𝑐))) = (𝐴𝑐))
2120mpteq2dva 5161 . . . . 5 (𝐴𝑊 → (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴𝑐)))
228ffvelrni 6850 . . . . . . 7 ((𝐴𝑐) ∈ (𝐼 × 2o) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2o))
2318, 22syl 17 . . . . . 6 ((𝐴𝑊𝑐 ∈ (0..^(♯‘𝐴))) → (𝑀‘(𝐴𝑐)) ∈ (𝐼 × 2o))
24 fcompt 6895 . . . . . . 7 ((𝑀:(𝐼 × 2o)⟶(𝐼 × 2o) ∧ 𝐴:(0..^(♯‘𝐴))⟶(𝐼 × 2o)) → (𝑀𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
258, 17, 24sylancr 589 . . . . . 6 (𝐴𝑊 → (𝑀𝐴) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝐴𝑐))))
268a1i 11 . . . . . . 7 (𝐴𝑊𝑀:(𝐼 × 2o)⟶(𝐼 × 2o))
2726feqmptd 6733 . . . . . 6 (𝐴𝑊𝑀 = (𝑎 ∈ (𝐼 × 2o) ↦ (𝑀𝑎)))
28 fveq2 6670 . . . . . 6 (𝑎 = (𝑀‘(𝐴𝑐)) → (𝑀𝑎) = (𝑀‘(𝑀‘(𝐴𝑐))))
2923, 25, 27, 28fmptco 6891 . . . . 5 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝑀‘(𝑀‘(𝐴𝑐)))))
3017feqmptd 6733 . . . . 5 (𝐴𝑊𝐴 = (𝑐 ∈ (0..^(♯‘𝐴)) ↦ (𝐴𝑐)))
3121, 29, 303eqtr4d 2866 . . . 4 (𝐴𝑊 → (𝑀 ∘ (𝑀𝐴)) = 𝐴)
3215, 31eqtrd 2856 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴)))) = 𝐴)
3332oveq2d 7172 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) = ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴))
34 wrdco 14193 . . . . 5 (((reverse‘𝐴) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
356, 8, 34sylancl 588 . . . 4 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ Word (𝐼 × 2o))
361efgrcl 18841 . . . . 5 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
3736simprd 498 . . . 4 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
3835, 37eleqtrrd 2916 . . 3 (𝐴𝑊 → (𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊)
39 efgval.r . . . 4 = ( ~FG𝐼)
40 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
411, 39, 7, 40efginvrel2 18853 . . 3 ((𝑀 ∘ (reverse‘𝐴)) ∈ 𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4238, 41syl 17 . 2 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ (𝑀 ∘ (reverse‘(𝑀 ∘ (reverse‘𝐴))))) ∅)
4333, 42eqbrtrrd 5090 1 (𝐴𝑊 → ((𝑀 ∘ (reverse‘𝐴)) ++ 𝐴) ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cdif 3933  c0 4291  cop 4573  cotp 4575   class class class wbr 5066  cmpt 5146   I cid 5459   × cxp 5553  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  1oc1o 8095  2oc2o 8096  0cc0 10537  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862   ++ cconcat 13922   splice csplice 14111  reversecreverse 14120  ⟨“cs2 14203   ~FG cefg 18832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-splice 14112  df-reverse 14121  df-s2 14210  df-efg 18835
This theorem is referenced by:  frgp0  18886
  Copyright terms: Public domain W3C validator