MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efginvrel2 Structured version   Visualization version   GIF version

Theorem efginvrel2 18855
Description: The inverse of the reverse of a word composed with the word relates to the identity. (This provides an explicit expression for the representation of the group inverse, given a representative of the free group equivalence class.) (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
Assertion
Ref Expression
efginvrel2 (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)
Distinct variable groups:   𝑦,𝑧   𝑣,𝑛,𝑤,𝑦,𝑧   𝑛,𝑀,𝑣,𝑤   𝑛,𝑊,𝑣,𝑤,𝑦,𝑧   𝑦, ,𝑧   𝑛,𝐼,𝑣,𝑤,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤,𝑣,𝑛)   (𝑤,𝑣,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑀(𝑦,𝑧)

Proof of Theorem efginvrel2
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
2 fviss 6743 . . . 4 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
31, 2eqsstri 4003 . . 3 𝑊 ⊆ Word (𝐼 × 2o)
43sseli 3965 . 2 (𝐴𝑊𝐴 ∈ Word (𝐼 × 2o))
5 id 22 . . . . . 6 (𝑐 = ∅ → 𝑐 = ∅)
6 fveq2 6672 . . . . . . . . 9 (𝑐 = ∅ → (reverse‘𝑐) = (reverse‘∅))
7 rev0 14128 . . . . . . . . 9 (reverse‘∅) = ∅
86, 7syl6eq 2874 . . . . . . . 8 (𝑐 = ∅ → (reverse‘𝑐) = ∅)
98coeq2d 5735 . . . . . . 7 (𝑐 = ∅ → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ ∅))
10 co02 6115 . . . . . . 7 (𝑀 ∘ ∅) = ∅
119, 10syl6eq 2874 . . . . . 6 (𝑐 = ∅ → (𝑀 ∘ (reverse‘𝑐)) = ∅)
125, 11oveq12d 7176 . . . . 5 (𝑐 = ∅ → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = (∅ ++ ∅))
1312breq1d 5078 . . . 4 (𝑐 = ∅ → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅ ↔ (∅ ++ ∅) ∅))
1413imbi2d 343 . . 3 (𝑐 = ∅ → ((𝐴𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅) ↔ (𝐴𝑊 → (∅ ++ ∅) ∅)))
15 id 22 . . . . . 6 (𝑐 = 𝑎𝑐 = 𝑎)
16 fveq2 6672 . . . . . . 7 (𝑐 = 𝑎 → (reverse‘𝑐) = (reverse‘𝑎))
1716coeq2d 5735 . . . . . 6 (𝑐 = 𝑎 → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ (reverse‘𝑎)))
1815, 17oveq12d 7176 . . . . 5 (𝑐 = 𝑎 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))
1918breq1d 5078 . . . 4 (𝑐 = 𝑎 → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅ ↔ (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅))
2019imbi2d 343 . . 3 (𝑐 = 𝑎 → ((𝐴𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅) ↔ (𝐴𝑊 → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅)))
21 id 22 . . . . . 6 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → 𝑐 = (𝑎 ++ ⟨“𝑏”⟩))
22 fveq2 6672 . . . . . . 7 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → (reverse‘𝑐) = (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))
2322coeq2d 5735 . . . . . 6 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩))))
2421, 23oveq12d 7176 . . . . 5 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
2524breq1d 5078 . . . 4 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅ ↔ ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅))
2625imbi2d 343 . . 3 (𝑐 = (𝑎 ++ ⟨“𝑏”⟩) → ((𝐴𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅) ↔ (𝐴𝑊 → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅)))
27 id 22 . . . . . 6 (𝑐 = 𝐴𝑐 = 𝐴)
28 fveq2 6672 . . . . . . 7 (𝑐 = 𝐴 → (reverse‘𝑐) = (reverse‘𝐴))
2928coeq2d 5735 . . . . . 6 (𝑐 = 𝐴 → (𝑀 ∘ (reverse‘𝑐)) = (𝑀 ∘ (reverse‘𝐴)))
3027, 29oveq12d 7176 . . . . 5 (𝑐 = 𝐴 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) = (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))))
3130breq1d 5078 . . . 4 (𝑐 = 𝐴 → ((𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅ ↔ (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅))
3231imbi2d 343 . . 3 (𝑐 = 𝐴 → ((𝐴𝑊 → (𝑐 ++ (𝑀 ∘ (reverse‘𝑐))) ∅) ↔ (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)))
33 ccatidid 13946 . . . 4 (∅ ++ ∅) = ∅
34 efgval.r . . . . . . 7 = ( ~FG𝐼)
351, 34efger 18846 . . . . . 6 Er 𝑊
3635a1i 11 . . . . 5 (𝐴𝑊 Er 𝑊)
37 wrd0 13891 . . . . . 6 ∅ ∈ Word (𝐼 × 2o)
381efgrcl 18843 . . . . . . 7 (𝐴𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2o)))
3938simprd 498 . . . . . 6 (𝐴𝑊𝑊 = Word (𝐼 × 2o))
4037, 39eleqtrrid 2922 . . . . 5 (𝐴𝑊 → ∅ ∈ 𝑊)
4136, 40erref 8311 . . . 4 (𝐴𝑊 → ∅ ∅)
4233, 41eqbrtrid 5103 . . 3 (𝐴𝑊 → (∅ ++ ∅) ∅)
4335a1i 11 . . . . . . 7 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → Er 𝑊)
44 simprl 769 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 ∈ Word (𝐼 × 2o))
45 revcl 14125 . . . . . . . . . . . 12 (𝑎 ∈ Word (𝐼 × 2o) → (reverse‘𝑎) ∈ Word (𝐼 × 2o))
4645ad2antrl 726 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (reverse‘𝑎) ∈ Word (𝐼 × 2o))
47 efgval2.m . . . . . . . . . . . 12 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4847efgmf 18841 . . . . . . . . . . 11 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)
49 wrdco 14195 . . . . . . . . . . 11 (((reverse‘𝑎) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o))
5046, 48, 49sylancl 588 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o))
51 ccatcl 13928 . . . . . . . . . 10 ((𝑎 ∈ Word (𝐼 × 2o) ∧ (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o)) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ Word (𝐼 × 2o))
5244, 50, 51syl2anc 586 . . . . . . . . 9 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ Word (𝐼 × 2o))
5339adantr 483 . . . . . . . . 9 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑊 = Word (𝐼 × 2o))
5452, 53eleqtrrd 2918 . . . . . . . 8 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊)
55 lencl 13885 . . . . . . . . . . . . . 14 (𝑎 ∈ Word (𝐼 × 2o) → (♯‘𝑎) ∈ ℕ0)
5655ad2antrl 726 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ ℕ0)
57 nn0uz 12283 . . . . . . . . . . . . 13 0 = (ℤ‘0)
5856, 57eleqtrdi 2925 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ (ℤ‘0))
59 ccatlen 13929 . . . . . . . . . . . . . 14 ((𝑎 ∈ Word (𝐼 × 2o) ∧ (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o)) → (♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) = ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎)))))
6044, 50, 59syl2anc 586 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) = ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎)))))
6156nn0zd 12088 . . . . . . . . . . . . . . 15 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ ℤ)
6261uzidd 12262 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ (ℤ‘(♯‘𝑎)))
63 lencl 13885 . . . . . . . . . . . . . . 15 ((𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o) → (♯‘(𝑀 ∘ (reverse‘𝑎))) ∈ ℕ0)
6450, 63syl 17 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑀 ∘ (reverse‘𝑎))) ∈ ℕ0)
65 uzaddcl 12307 . . . . . . . . . . . . . 14 (((♯‘𝑎) ∈ (ℤ‘(♯‘𝑎)) ∧ (♯‘(𝑀 ∘ (reverse‘𝑎))) ∈ ℕ0) → ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎)))) ∈ (ℤ‘(♯‘𝑎)))
6662, 64, 65syl2anc 586 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎) + (♯‘(𝑀 ∘ (reverse‘𝑎)))) ∈ (ℤ‘(♯‘𝑎)))
6760, 66eqeltrd 2915 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) ∈ (ℤ‘(♯‘𝑎)))
68 elfzuzb 12905 . . . . . . . . . . . 12 ((♯‘𝑎) ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) ↔ ((♯‘𝑎) ∈ (ℤ‘0) ∧ (♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) ∈ (ℤ‘(♯‘𝑎))))
6958, 67, 68sylanbrc 585 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))))
70 simprr 771 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑏 ∈ (𝐼 × 2o))
71 efgval2.t . . . . . . . . . . . 12 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
721, 34, 47, 71efgtval 18851 . . . . . . . . . . 11 (((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 ∧ (♯‘𝑎) ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) ∧ 𝑏 ∈ (𝐼 × 2o)) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) = ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice ⟨(♯‘𝑎), (♯‘𝑎), ⟨“𝑏(𝑀𝑏)”⟩⟩))
7354, 69, 70, 72syl3anc 1367 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) = ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice ⟨(♯‘𝑎), (♯‘𝑎), ⟨“𝑏(𝑀𝑏)”⟩⟩))
7437a1i 11 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ∅ ∈ Word (𝐼 × 2o))
7548ffvelrni 6852 . . . . . . . . . . . . 13 (𝑏 ∈ (𝐼 × 2o) → (𝑀𝑏) ∈ (𝐼 × 2o))
7675ad2antll 727 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀𝑏) ∈ (𝐼 × 2o))
7770, 76s2cld 14235 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“𝑏(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o))
78 ccatrid 13943 . . . . . . . . . . . . . 14 (𝑎 ∈ Word (𝐼 × 2o) → (𝑎 ++ ∅) = 𝑎)
7978ad2antrl 726 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ ∅) = 𝑎)
8079eqcomd 2829 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑎 = (𝑎 ++ ∅))
8180oveq1d 7173 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ∅) ++ (𝑀 ∘ (reverse‘𝑎))))
82 eqidd 2824 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) = (♯‘𝑎))
83 hash0 13731 . . . . . . . . . . . . 13 (♯‘∅) = 0
8483oveq2i 7169 . . . . . . . . . . . 12 ((♯‘𝑎) + (♯‘∅)) = ((♯‘𝑎) + 0)
8556nn0cnd 11960 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) ∈ ℂ)
8685addid1d 10842 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎) + 0) = (♯‘𝑎))
8784, 86syl5req 2871 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (♯‘𝑎) = ((♯‘𝑎) + (♯‘∅)))
8844, 74, 50, 77, 81, 82, 87splval2 14121 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice ⟨(♯‘𝑎), (♯‘𝑎), ⟨“𝑏(𝑀𝑏)”⟩⟩) = ((𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))))
8970s1cld 13959 . . . . . . . . . . . . . . . 16 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“𝑏”⟩ ∈ Word (𝐼 × 2o))
90 revccat 14130 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ Word (𝐼 × 2o) ∧ ⟨“𝑏”⟩ ∈ Word (𝐼 × 2o)) → (reverse‘(𝑎 ++ ⟨“𝑏”⟩)) = ((reverse‘⟨“𝑏”⟩) ++ (reverse‘𝑎)))
9144, 89, 90syl2anc 586 . . . . . . . . . . . . . . 15 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (reverse‘(𝑎 ++ ⟨“𝑏”⟩)) = ((reverse‘⟨“𝑏”⟩) ++ (reverse‘𝑎)))
92 revs1 14129 . . . . . . . . . . . . . . . 16 (reverse‘⟨“𝑏”⟩) = ⟨“𝑏”⟩
9392oveq1i 7168 . . . . . . . . . . . . . . 15 ((reverse‘⟨“𝑏”⟩) ++ (reverse‘𝑎)) = (⟨“𝑏”⟩ ++ (reverse‘𝑎))
9491, 93syl6eq 2874 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (reverse‘(𝑎 ++ ⟨“𝑏”⟩)) = (⟨“𝑏”⟩ ++ (reverse‘𝑎)))
9594coeq2d 5735 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩))) = (𝑀 ∘ (⟨“𝑏”⟩ ++ (reverse‘𝑎))))
9648a1i 11 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o))
97 ccatco 14199 . . . . . . . . . . . . . 14 ((⟨“𝑏”⟩ ∈ Word (𝐼 × 2o) ∧ (reverse‘𝑎) ∈ Word (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ (⟨“𝑏”⟩ ++ (reverse‘𝑎))) = ((𝑀 ∘ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘𝑎))))
9889, 46, 96, 97syl3anc 1367 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (⟨“𝑏”⟩ ++ (reverse‘𝑎))) = ((𝑀 ∘ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘𝑎))))
99 s1co 14197 . . . . . . . . . . . . . . 15 ((𝑏 ∈ (𝐼 × 2o) ∧ 𝑀:(𝐼 × 2o)⟶(𝐼 × 2o)) → (𝑀 ∘ ⟨“𝑏”⟩) = ⟨“(𝑀𝑏)”⟩)
10070, 48, 99sylancl 588 . . . . . . . . . . . . . 14 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ ⟨“𝑏”⟩) = ⟨“(𝑀𝑏)”⟩)
101100oveq1d 7173 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑀 ∘ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎))))
10295, 98, 1013eqtrd 2862 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩))) = (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎))))
103102oveq2d 7174 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎)))))
104 ccatcl 13928 . . . . . . . . . . . . 13 ((𝑎 ∈ Word (𝐼 × 2o) ∧ ⟨“𝑏”⟩ ∈ Word (𝐼 × 2o)) → (𝑎 ++ ⟨“𝑏”⟩) ∈ Word (𝐼 × 2o))
10544, 89, 104syl2anc 586 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ ⟨“𝑏”⟩) ∈ Word (𝐼 × 2o))
10676s1cld 13959 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ⟨“(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o))
107 ccatass 13944 . . . . . . . . . . . 12 (((𝑎 ++ ⟨“𝑏”⟩) ∈ Word (𝐼 × 2o) ∧ ⟨“(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o) ∧ (𝑀 ∘ (reverse‘𝑎)) ∈ Word (𝐼 × 2o)) → (((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎)))))
108105, 106, 50, 107syl3anc 1367 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (⟨“(𝑀𝑏)”⟩ ++ (𝑀 ∘ (reverse‘𝑎)))))
109 ccatass 13944 . . . . . . . . . . . . . 14 ((𝑎 ∈ Word (𝐼 × 2o) ∧ ⟨“𝑏”⟩ ∈ Word (𝐼 × 2o) ∧ ⟨“(𝑀𝑏)”⟩ ∈ Word (𝐼 × 2o)) → ((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) = (𝑎 ++ (⟨“𝑏”⟩ ++ ⟨“(𝑀𝑏)”⟩)))
11044, 89, 106, 109syl3anc 1367 . . . . . . . . . . . . 13 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) = (𝑎 ++ (⟨“𝑏”⟩ ++ ⟨“(𝑀𝑏)”⟩)))
111 df-s2 14212 . . . . . . . . . . . . . 14 ⟨“𝑏(𝑀𝑏)”⟩ = (⟨“𝑏”⟩ ++ ⟨“(𝑀𝑏)”⟩)
112111oveq2i 7169 . . . . . . . . . . . . 13 (𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩) = (𝑎 ++ (⟨“𝑏”⟩ ++ ⟨“(𝑀𝑏)”⟩))
113110, 112syl6eqr 2876 . . . . . . . . . . . 12 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) = (𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩))
114113oveq1d 7173 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (((𝑎 ++ ⟨“𝑏”⟩) ++ ⟨“(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))))
115103, 108, 1143eqtr2rd 2865 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏(𝑀𝑏)”⟩) ++ (𝑀 ∘ (reverse‘𝑎))) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
11673, 88, 1153eqtrd 2862 . . . . . . . . 9 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) = ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
1171, 34, 47, 71efgtf 18850 . . . . . . . . . . . . 13 ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 → ((𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) = (𝑚 ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))), 𝑢 ∈ (𝐼 × 2o) ↦ ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) splice ⟨𝑚, 𝑚, ⟨“𝑢(𝑀𝑢)”⟩⟩)) ∧ (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))):((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))⟶𝑊))
118117simprd 498 . . . . . . . . . . . 12 ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 → (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))):((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))⟶𝑊)
11954, 118syl 17 . . . . . . . . . . 11 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))):((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o))⟶𝑊)
120119ffnd 6517 . . . . . . . . . 10 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) Fn ((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o)))
121 fnovrn 7325 . . . . . . . . . 10 (((𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))) Fn ((0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) × (𝐼 × 2o)) ∧ (♯‘𝑎) ∈ (0...(♯‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) ∧ 𝑏 ∈ (𝐼 × 2o)) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))))
122120, 69, 70, 121syl3anc 1367 . . . . . . . . 9 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((♯‘𝑎)(𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))𝑏) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))))
123116, 122eqeltrrd 2916 . . . . . . . 8 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎)))))
1241, 34, 47, 71efgi2 18853 . . . . . . . 8 (((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∈ 𝑊 ∧ ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∈ ran (𝑇‘(𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
12554, 123, 124syl2anc 586 . . . . . . 7 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))))
12643, 125ersym 8303 . . . . . 6 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))))
12743ertr 8306 . . . . . 6 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∧ (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅) → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅))
128126, 127mpand 693 . . . . 5 ((𝐴𝑊 ∧ (𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o))) → ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅ → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅))
129128expcom 416 . . . 4 ((𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o)) → (𝐴𝑊 → ((𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅ → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅)))
130129a2d 29 . . 3 ((𝑎 ∈ Word (𝐼 × 2o) ∧ 𝑏 ∈ (𝐼 × 2o)) → ((𝐴𝑊 → (𝑎 ++ (𝑀 ∘ (reverse‘𝑎))) ∅) → (𝐴𝑊 → ((𝑎 ++ ⟨“𝑏”⟩) ++ (𝑀 ∘ (reverse‘(𝑎 ++ ⟨“𝑏”⟩)))) ∅)))
13114, 20, 26, 32, 42, 130wrdind 14086 . 2 (𝐴 ∈ Word (𝐼 × 2o) → (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅))
1324, 131mpcom 38 1 (𝐴𝑊 → (𝐴 ++ (𝑀 ∘ (reverse‘𝐴))) ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  cdif 3935  c0 4293  cop 4575  cotp 4577   class class class wbr 5068  cmpt 5148   I cid 5461   × cxp 5555  ran crn 5558  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  1oc1o 8097  2oc2o 8098   Er wer 8288  0cc0 10539   + caddc 10542  0cn0 11900  cuz 12246  ...cfz 12895  chash 13693  Word cword 13864   ++ cconcat 13924  ⟨“cs1 13951   splice csplice 14113  reversecreverse 14122  ⟨“cs2 14205   ~FG cefg 18834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-lsw 13917  df-concat 13925  df-s1 13952  df-substr 14005  df-pfx 14035  df-splice 14114  df-reverse 14123  df-s2 14212  df-efg 18837
This theorem is referenced by:  efginvrel1  18856  frgpinv  18892
  Copyright terms: Public domain W3C validator