![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eftlcvg | Structured version Visualization version GIF version |
Description: The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
eftl.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
Ref | Expression |
---|---|
eftlcvg | ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eftl.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
2 | 1 | efcllem 14928 | . . 3 ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ ) |
3 | 2 | adantr 472 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq0( + , 𝐹) ∈ dom ⇝ ) |
4 | nn0uz 11836 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
5 | simpr 479 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
6 | 1 | eftval 14927 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
7 | 6 | adantl 473 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
8 | eftcl 14924 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | |
9 | 8 | adantlr 753 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
10 | 7, 9 | eqeltrd 2803 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
11 | 4, 5, 10 | iserex 14507 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (seq0( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ )) |
12 | 3, 11 | mpbid 222 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ↦ cmpt 4837 dom cdm 5218 ‘cfv 6001 (class class class)co 6765 ℂcc 10047 0cc0 10049 + caddc 10052 / cdiv 10797 ℕ0cn0 11405 seqcseq 12916 ↑cexp 12975 !cfa 13175 ⇝ cli 14335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-addf 10128 ax-mulf 10129 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-fal 1602 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-pm 7977 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-sup 8464 df-inf 8465 df-oi 8531 df-card 8878 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-n0 11406 df-z 11491 df-uz 11801 df-rp 11947 df-ico 12295 df-fz 12441 df-fzo 12581 df-fl 12708 df-seq 12917 df-exp 12976 df-fac 13176 df-hash 13233 df-shft 13927 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-limsup 14322 df-clim 14339 df-rlim 14340 df-sum 14537 |
This theorem is referenced by: eftlcl 14957 reeftlcl 14958 eftlub 14959 efsep 14960 subfaclim 31398 |
Copyright terms: Public domain | W3C validator |