MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eftlub Structured version   Visualization version   GIF version

Theorem eftlub 14883
Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eftl.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
eftl.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
eftl.3 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
eftl.4 (𝜑𝑀 ∈ ℕ)
eftl.5 (𝜑𝐴 ∈ ℂ)
eftl.6 (𝜑 → (abs‘𝐴) ≤ 1)
Assertion
Ref Expression
eftlub (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀,𝑛   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑘,𝑛)

Proof of Theorem eftlub
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eftl.5 . . . 4 (𝜑𝐴 ∈ ℂ)
2 eftl.4 . . . . 5 (𝜑𝑀 ∈ ℕ)
32nnnn0d 11389 . . . 4 (𝜑𝑀 ∈ ℕ0)
4 eftl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
54eftlcl 14881 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
61, 3, 5syl2anc 694 . . 3 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
76abscld 14219 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ∈ ℝ)
81abscld 14219 . . 3 (𝜑 → (abs‘𝐴) ∈ ℝ)
9 eftl.2 . . . 4 𝐺 = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
109reeftlcl 14882 . . 3 (((abs‘𝐴) ∈ ℝ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
118, 3, 10syl2anc 694 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ ℝ)
128, 3reexpcld 13065 . . 3 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℝ)
13 peano2nn0 11371 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
143, 13syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ ℕ0)
1514nn0red 11390 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ)
16 faccl 13110 . . . . . 6 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
173, 16syl 17 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℕ)
1817, 2nnmulcld 11106 . . . 4 (𝜑 → ((!‘𝑀) · 𝑀) ∈ ℕ)
1915, 18nndivred 11107 . . 3 (𝜑 → ((𝑀 + 1) / ((!‘𝑀) · 𝑀)) ∈ ℝ)
2012, 19remulcld 10108 . 2 (𝜑 → (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ ℝ)
21 eqid 2651 . . 3 (ℤ𝑀) = (ℤ𝑀)
222nnzd 11519 . . . 4 (𝜑𝑀 ∈ ℤ)
23 eqidd 2652 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
24 eluznn0 11795 . . . . . 6 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
253, 24sylan 487 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
264eftval 14851 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2726adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
28 eftcl 14848 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
291, 28sylan 487 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
3027, 29eqeltrd 2730 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
3125, 30syldan 486 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
324eftlcvg 14880 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
331, 3, 32syl2anc 694 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
3421, 22, 23, 31, 33isumclim2 14533 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘))
35 eqidd 2652 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (𝐺𝑘))
369eftval 14851 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
3736adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
38 reeftcl 14849 . . . . . . . 8 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
398, 38sylan 487 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((abs‘𝐴)↑𝑘) / (!‘𝑘)) ∈ ℝ)
4037, 39eqeltrd 2730 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4125, 40syldan 486 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
4241recnd 10106 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
438recnd 10106 . . . . 5 (𝜑 → (abs‘𝐴) ∈ ℂ)
449eftlcvg 14880 . . . . 5 (((abs‘𝐴) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4543, 3, 44syl2anc 694 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
4621, 22, 35, 42, 45isumclim2 14533 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
47 eftabs 14850 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
481, 47sylan 487 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐴𝑘) / (!‘𝑘))) = (((abs‘𝐴)↑𝑘) / (!‘𝑘)))
4927fveq2d 6233 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘(𝐹𝑘)) = (abs‘((𝐴𝑘) / (!‘𝑘))))
5048, 49, 373eqtr4rd 2696 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5125, 50syldan 486 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
5221, 34, 46, 22, 31, 51iserabs 14591 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
53 nn0uz 11760 . . . 4 0 = (ℤ‘0)
54 0zd 11427 . . . 4 (𝜑 → 0 ∈ ℤ)
552nncnd 11074 . . . . 5 (𝜑𝑀 ∈ ℂ)
56 nn0cn 11340 . . . . 5 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
57 nn0ex 11336 . . . . . . . 8 0 ∈ V
5857mptex 6527 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) ∈ V
599, 58eqeltri 2726 . . . . . 6 𝐺 ∈ V
6059shftval4 13861 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
6155, 56, 60syl2an 493 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐺 shift -𝑀)‘𝑗) = (𝐺‘(𝑀 + 𝑗)))
62 nn0addcl 11366 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
633, 62sylan 487 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ ℕ0)
649eftval 14851 . . . . . 6 ((𝑀 + 𝑗) ∈ ℕ0 → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
6563, 64syl 17 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) = (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))))
668adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
67 reeftcl 14849 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ (𝑀 + 𝑗) ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6866, 63, 67syl2anc 694 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ∈ ℝ)
6965, 68eqeltrd 2730 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ∈ ℝ)
70 oveq2 6698 . . . . . . 7 (𝑛 = 𝑗 → ((1 / (𝑀 + 1))↑𝑛) = ((1 / (𝑀 + 1))↑𝑗))
7170oveq2d 6706 . . . . . 6 (𝑛 = 𝑗 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
72 eftl.3 . . . . . 6 𝐻 = (𝑛 ∈ ℕ0 ↦ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛)))
73 ovex 6718 . . . . . 6 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ V
7471, 72, 73fvmpt 6321 . . . . 5 (𝑗 ∈ ℕ0 → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
7574adantl 481 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
7612, 17nndivred 11107 . . . . . 6 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
7776adantr 480 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℝ)
782peano2nnd 11075 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℕ)
7978nnrecred 11104 . . . . . 6 (𝜑 → (1 / (𝑀 + 1)) ∈ ℝ)
80 reexpcl 12917 . . . . . 6 (((1 / (𝑀 + 1)) ∈ ℝ ∧ 𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
8179, 80sylan 487 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℝ)
8277, 81remulcld 10108 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ)
8366, 63reexpcld 13065 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ)
8412adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℝ)
85 faccl 13110 . . . . . . . . . 10 ((𝑀 + 𝑗) ∈ ℕ0 → (!‘(𝑀 + 𝑗)) ∈ ℕ)
8663, 85syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℕ)
8786nnred 11073 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℝ)
8887, 82remulcld 10108 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))) ∈ ℝ)
893adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝑀 ∈ ℕ0)
90 uzid 11740 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
9122, 90syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
92 uzaddcl 11782 . . . . . . . . 9 ((𝑀 ∈ (ℤ𝑀) ∧ 𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
9391, 92sylan 487 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 𝑗) ∈ (ℤ𝑀))
941absge0d 14227 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘𝐴))
9594adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
96 eftl.6 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ≤ 1)
9796adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ≤ 1)
9866, 89, 93, 95, 97leexp2rd 13082 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((abs‘𝐴)↑𝑀))
9917adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℕ)
100 nnexpcl 12913 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℕ ∧ 𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
10178, 100sylan 487 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℕ)
10299, 101nnmulcld 11106 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℕ)
103102nnred 11073 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ)
1048, 3, 94expge0d 13066 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((abs‘𝐴)↑𝑀))
10512, 104jca 553 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
106105adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀)))
107 faclbnd6 13126 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
1083, 107sylan 487 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗)))
109 lemul1a 10915 . . . . . . . . . 10 (((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ ∧ (!‘(𝑀 + 𝑗)) ∈ ℝ ∧ (((abs‘𝐴)↑𝑀) ∈ ℝ ∧ 0 ≤ ((abs‘𝐴)↑𝑀))) ∧ ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≤ (!‘(𝑀 + 𝑗))) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
110103, 87, 106, 108, 109syl31anc 1369 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)))
11187, 84remulcld 10108 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ∈ ℝ)
112102nnrpd 11908 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℝ+)
11384, 111, 112lemuldiv2d 11960 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((((!‘𝑀) · ((𝑀 + 1)↑𝑗)) · ((abs‘𝐴)↑𝑀)) ≤ ((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) ↔ ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
114110, 113mpbid 222 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
11586nncnd 11074 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (!‘(𝑀 + 𝑗)) ∈ ℂ)
11612recnd 10106 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴)↑𝑀) ∈ ℂ)
117116adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ∈ ℂ)
118102nncnd 11074 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ∈ ℂ)
119102nnne0d 11103 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → ((!‘𝑀) · ((𝑀 + 1)↑𝑗)) ≠ 0)
120115, 117, 118, 119divassd 10874 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))))
12178nncnd 11074 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 + 1) ∈ ℂ)
122121adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℂ)
12378adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ)
124123nnne0d 11103 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝑀 + 1) ≠ 0)
125 nn0z 11438 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
126125adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℤ)
127122, 124, 126exprecd 13056 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) = (1 / ((𝑀 + 1)↑𝑗)))
128127oveq2d 6706 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
12976recnd 10106 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
130129adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / (!‘𝑀)) ∈ ℂ)
131101nncnd 11074 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ∈ ℂ)
132101nnne0d 11103 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑀 + 1)↑𝑗) ≠ 0)
133130, 131, 132divrecd 10842 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · (1 / ((𝑀 + 1)↑𝑗))))
13417nncnd 11074 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑀) ∈ ℂ)
135134adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ∈ ℂ)
136 facne0 13113 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (!‘𝑀) ≠ 0)
1373, 136syl 17 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑀) ≠ 0)
138137adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑀) ≠ 0)
139117, 135, 131, 138, 132divdiv1d 10870 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) / ((𝑀 + 1)↑𝑗)) = (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))))
140128, 133, 1393eqtr2rd 2692 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
141140oveq2d 6706 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ0) → ((!‘(𝑀 + 𝑗)) · (((abs‘𝐴)↑𝑀) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗)))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
142120, 141eqtrd 2685 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → (((!‘(𝑀 + 𝑗)) · ((abs‘𝐴)↑𝑀)) / ((!‘𝑀) · ((𝑀 + 1)↑𝑗))) = ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
143114, 142breqtrd 4711 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑𝑀) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14483, 84, 88, 98, 143letrd 10232 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗))))
14586nngt0d 11102 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 < (!‘(𝑀 + 𝑗)))
146 ledivmul 10937 . . . . . . 7 ((((abs‘𝐴)↑(𝑀 + 𝑗)) ∈ ℝ ∧ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℝ ∧ ((!‘(𝑀 + 𝑗)) ∈ ℝ ∧ 0 < (!‘(𝑀 + 𝑗)))) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
14783, 82, 87, 145, 146syl112anc 1370 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ↔ ((abs‘𝐴)↑(𝑀 + 𝑗)) ≤ ((!‘(𝑀 + 𝑗)) · ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))))
148144, 147mpbird 247 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (((abs‘𝐴)↑(𝑀 + 𝑗)) / (!‘(𝑀 + 𝑗))) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
14965, 148eqbrtrd 4707 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐺‘(𝑀 + 𝑗)) ≤ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
150 0z 11426 . . . . . 6 0 ∈ ℤ
15122znegcld 11522 . . . . . 6 (𝜑 → -𝑀 ∈ ℤ)
15259seqshft 13869 . . . . . 6 ((0 ∈ ℤ ∧ -𝑀 ∈ ℤ) → seq0( + , (𝐺 shift -𝑀)) = (seq(0 − -𝑀)( + , 𝐺) shift -𝑀))
153150, 151, 152sylancr 696 . . . . 5 (𝜑 → seq0( + , (𝐺 shift -𝑀)) = (seq(0 − -𝑀)( + , 𝐺) shift -𝑀))
154 0cn 10070 . . . . . . . . . . . 12 0 ∈ ℂ
155 subneg 10368 . . . . . . . . . . . 12 ((0 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (0 − -𝑀) = (0 + 𝑀))
156154, 155mpan 706 . . . . . . . . . . 11 (𝑀 ∈ ℂ → (0 − -𝑀) = (0 + 𝑀))
157 addid2 10257 . . . . . . . . . . 11 (𝑀 ∈ ℂ → (0 + 𝑀) = 𝑀)
158156, 157eqtrd 2685 . . . . . . . . . 10 (𝑀 ∈ ℂ → (0 − -𝑀) = 𝑀)
15955, 158syl 17 . . . . . . . . 9 (𝜑 → (0 − -𝑀) = 𝑀)
160159seqeq1d 12847 . . . . . . . 8 (𝜑 → seq(0 − -𝑀)( + , 𝐺) = seq𝑀( + , 𝐺))
161160, 46eqbrtrd 4707 . . . . . . 7 (𝜑 → seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
162 seqex 12843 . . . . . . . 8 seq(0 − -𝑀)( + , 𝐺) ∈ V
163 climshft 14351 . . . . . . . 8 ((-𝑀 ∈ ℤ ∧ seq(0 − -𝑀)( + , 𝐺) ∈ V) → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
164151, 162, 163sylancl 695 . . . . . . 7 (𝜑 → ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ↔ seq(0 − -𝑀)( + , 𝐺) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘)))
165161, 164mpbird 247 . . . . . 6 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
166 ovex 6718 . . . . . . 7 (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ V
167 sumex 14462 . . . . . . 7 Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ V
168166, 167breldm 5361 . . . . . 6 ((seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ⇝ Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
169165, 168syl 17 . . . . 5 (𝜑 → (seq(0 − -𝑀)( + , 𝐺) shift -𝑀) ∈ dom ⇝ )
170153, 169eqeltrd 2730 . . . 4 (𝜑 → seq0( + , (𝐺 shift -𝑀)) ∈ dom ⇝ )
1712nnge1d 11101 . . . . . . . . . 10 (𝜑 → 1 ≤ 𝑀)
172 1nn 11069 . . . . . . . . . . 11 1 ∈ ℕ
173 nnleltp1 11470 . . . . . . . . . . 11 ((1 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
174172, 2, 173sylancr 696 . . . . . . . . . 10 (𝜑 → (1 ≤ 𝑀 ↔ 1 < (𝑀 + 1)))
175171, 174mpbid 222 . . . . . . . . 9 (𝜑 → 1 < (𝑀 + 1))
17614nn0ge0d 11392 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑀 + 1))
17715, 176absidd 14205 . . . . . . . . 9 (𝜑 → (abs‘(𝑀 + 1)) = (𝑀 + 1))
178175, 177breqtrrd 4713 . . . . . . . 8 (𝜑 → 1 < (abs‘(𝑀 + 1)))
179 eqid 2651 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))
180 ovex 6718 . . . . . . . . . 10 ((1 / (𝑀 + 1))↑𝑗) ∈ V
18170, 179, 180fvmpt 6321 . . . . . . . . 9 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
182181adantl 481 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) = ((1 / (𝑀 + 1))↑𝑗))
183121, 178, 182georeclim 14647 . . . . . . 7 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))) ⇝ ((𝑀 + 1) / ((𝑀 + 1) − 1)))
18481recnd 10106 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((1 / (𝑀 + 1))↑𝑗) ∈ ℂ)
185182, 184eqeltrd 2730 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗) ∈ ℂ)
186182oveq2d 6706 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
18775, 186eqtr4d 2688 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐻𝑗) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑛 ∈ ℕ0 ↦ ((1 / (𝑀 + 1))↑𝑛))‘𝑗)))
18853, 54, 129, 183, 185, 187isermulc2 14432 . . . . . 6 (𝜑 → seq0( + , 𝐻) ⇝ ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))))
189 ax-1cn 10032 . . . . . . . . . . 11 1 ∈ ℂ
190 pncan 10325 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
19155, 189, 190sylancl 695 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
192191oveq2d 6706 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / ((𝑀 + 1) − 1)) = ((𝑀 + 1) / 𝑀))
193192oveq2d 6706 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
19415, 2nndivred 11107 . . . . . . . . . 10 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℝ)
195194recnd 10106 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / 𝑀) ∈ ℂ)
196116, 195, 134, 137div23d 10876 . . . . . . . 8 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / 𝑀)))
197193, 196eqtr4d 2688 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)))
198116, 195, 134, 137divassd 10874 . . . . . . 7 (𝜑 → ((((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / 𝑀)) / (!‘𝑀)) = (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))))
1992nnne0d 11103 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
200121, 55, 134, 199, 137divdiv1d 10870 . . . . . . . . 9 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / (𝑀 · (!‘𝑀))))
20155, 134mulcomd 10099 . . . . . . . . . 10 (𝜑 → (𝑀 · (!‘𝑀)) = ((!‘𝑀) · 𝑀))
202201oveq2d 6706 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) / (𝑀 · (!‘𝑀))) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
203200, 202eqtrd 2685 . . . . . . . 8 (𝜑 → (((𝑀 + 1) / 𝑀) / (!‘𝑀)) = ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))
204203oveq2d 6706 . . . . . . 7 (𝜑 → (((abs‘𝐴)↑𝑀) · (((𝑀 + 1) / 𝑀) / (!‘𝑀))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
205197, 198, 2043eqtrd 2689 . . . . . 6 (𝜑 → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((𝑀 + 1) / ((𝑀 + 1) − 1))) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
206188, 205breqtrd 4711 . . . . 5 (𝜑 → seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
207 seqex 12843 . . . . . 6 seq0( + , 𝐻) ∈ V
208 ovex 6718 . . . . . 6 (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) ∈ V
209207, 208breldm 5361 . . . . 5 (seq0( + , 𝐻) ⇝ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))) → seq0( + , 𝐻) ∈ dom ⇝ )
210206, 209syl 17 . . . 4 (𝜑 → seq0( + , 𝐻) ∈ dom ⇝ )
21153, 54, 61, 69, 75, 82, 149, 170, 210isumle 14620 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) ≤ Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)))
212 eqid 2651 . . . . 5 (ℤ‘(0 + 𝑀)) = (ℤ‘(0 + 𝑀))
213 fveq2 6229 . . . . 5 (𝑘 = (𝑀 + 𝑗) → (𝐺𝑘) = (𝐺‘(𝑀 + 𝑗)))
21455addid2d 10275 . . . . . . . . 9 (𝜑 → (0 + 𝑀) = 𝑀)
215214fveq2d 6233 . . . . . . . 8 (𝜑 → (ℤ‘(0 + 𝑀)) = (ℤ𝑀))
216215eleq2d 2716 . . . . . . 7 (𝜑 → (𝑘 ∈ (ℤ‘(0 + 𝑀)) ↔ 𝑘 ∈ (ℤ𝑀)))
217216biimpa 500 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → 𝑘 ∈ (ℤ𝑀))
218217, 42syldan 486 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(0 + 𝑀))) → (𝐺𝑘) ∈ ℂ)
21953, 212, 213, 22, 54, 218isumshft 14615 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)))
220215sumeq1d 14475 . . . 4 (𝜑 → Σ𝑘 ∈ (ℤ‘(0 + 𝑀))(𝐺𝑘) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
221219, 220eqtr3d 2687 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐺‘(𝑀 + 𝑗)) = Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘))
22282recnd 10106 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) ∈ ℂ)
22353, 54, 75, 222, 206isumclim 14532 . . 3 (𝜑 → Σ𝑗 ∈ ℕ0 ((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑗)) = (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
224211, 221, 2233brtr3d 4716 . 2 (𝜑 → Σ𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
2257, 11, 20, 52, 224letrd 10232 1 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231   class class class wbr 4685  cmpt 4762  dom cdm 5143  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  cuz 11725  seqcseq 12841  cexp 12900  !cfa 13100   shift cshi 13850  abscabs 14018  cli 14259  Σcsu 14460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-fac 13101  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461
This theorem is referenced by:  ef01bndlem  14958  eirrlem  14976  dveflem  23787  subfaclim  31296
  Copyright terms: Public domain W3C validator