MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalginv Structured version   Visualization version   GIF version

Theorem eucalginv 15928
Description: The invariant of the step function 𝐸 for Euclid's Algorithm is the gcd operator applied to the state. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalginv (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘𝑋))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalginv
StepHypRef Expression
1 eucalgval.1 . . . 4 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
21eucalgval 15926 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
32fveq2d 6674 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)))
4 1st2nd2 7728 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
54adantr 483 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
65fveq2d 6674 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
7 df-ov 7159 . . . . . . 7 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
86, 7syl6eqr 2874 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
98oveq2d 7172 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((2nd𝑋) gcd ( mod ‘𝑋)) = ((2nd𝑋) gcd ((1st𝑋) mod (2nd𝑋))))
10 nnz 12005 . . . . . 6 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℤ)
11 xp1st 7721 . . . . . . . . . 10 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
1211adantr 483 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℕ0)
1312nn0zd 12086 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℤ)
14 zmodcl 13260 . . . . . . . 8 (((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℕ) → ((1st𝑋) mod (2nd𝑋)) ∈ ℕ0)
1513, 14sylancom 590 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((1st𝑋) mod (2nd𝑋)) ∈ ℕ0)
1615nn0zd 12086 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((1st𝑋) mod (2nd𝑋)) ∈ ℤ)
17 gcdcom 15862 . . . . . 6 (((2nd𝑋) ∈ ℤ ∧ ((1st𝑋) mod (2nd𝑋)) ∈ ℤ) → ((2nd𝑋) gcd ((1st𝑋) mod (2nd𝑋))) = (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)))
1810, 16, 17syl2an2 684 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((2nd𝑋) gcd ((1st𝑋) mod (2nd𝑋))) = (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)))
19 modgcd 15880 . . . . . 6 (((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℕ) → (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)) = ((1st𝑋) gcd (2nd𝑋)))
2013, 19sylancom 590 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)) = ((1st𝑋) gcd (2nd𝑋)))
219, 18, 203eqtrd 2860 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((2nd𝑋) gcd ( mod ‘𝑋)) = ((1st𝑋) gcd (2nd𝑋)))
22 nnne0 11672 . . . . . . . . 9 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ≠ 0)
2322adantl 484 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (2nd𝑋) ≠ 0)
2423neneqd 3021 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ¬ (2nd𝑋) = 0)
2524iffalsed 4478 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
2625fveq2d 6674 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩))
27 df-ov 7159 . . . . 5 ((2nd𝑋) gcd ( mod ‘𝑋)) = ( gcd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩)
2826, 27syl6eqr 2874 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ((2nd𝑋) gcd ( mod ‘𝑋)))
295fveq2d 6674 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘𝑋) = ( gcd ‘⟨(1st𝑋), (2nd𝑋)⟩))
30 df-ov 7159 . . . . 5 ((1st𝑋) gcd (2nd𝑋)) = ( gcd ‘⟨(1st𝑋), (2nd𝑋)⟩)
3129, 30syl6eqr 2874 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘𝑋) = ((1st𝑋) gcd (2nd𝑋)))
3221, 28, 313eqtr4d 2866 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
33 iftrue 4473 . . . . 5 ((2nd𝑋) = 0 → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = 𝑋)
3433fveq2d 6674 . . . 4 ((2nd𝑋) = 0 → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
3534adantl 484 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) = 0) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
36 xp2nd 7722 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
37 elnn0 11900 . . . 4 ((2nd𝑋) ∈ ℕ0 ↔ ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3836, 37sylib 220 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3932, 35, 38mpjaodan 955 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
403, 39eqtrd 2856 1 (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  ifcif 4467  cop 4573   × cxp 5553  cfv 6355  (class class class)co 7156  cmpo 7158  1st c1st 7687  2nd c2nd 7688  0cc0 10537  cn 11638  0cn0 11898  cz 11982   mod cmo 13238   gcd cgcd 15843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844
This theorem is referenced by:  eucalg  15931
  Copyright terms: Public domain W3C validator