Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expfac Structured version   Visualization version   GIF version

Theorem expfac 39290
Description: Factorial grows faster than exponential. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypothesis
Ref Expression
expfac.f 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
expfac (𝐴 ∈ ℂ → 𝐹 ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem expfac
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11666 . 2 0 = (ℤ‘0)
2 0zd 11333 . 2 (𝐴 ∈ ℂ → 0 ∈ ℤ)
3 expfac.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
4 nn0ex 11242 . . . . 5 0 ∈ V
54mptex 6440 . . . 4 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) ∈ V
63, 5eqeltri 2694 . . 3 𝐹 ∈ V
76a1i 11 . 2 (𝐴 ∈ ℂ → 𝐹 ∈ V)
83efcllem 14733 . 2 (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
9 simpr 477 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
10 eftcl 14729 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((𝐴𝑚) / (!‘𝑚)) ∈ ℂ)
113a1i 11 . . . . 5 ((𝑚 ∈ ℕ0 ∧ ((𝐴𝑚) / (!‘𝑚)) ∈ ℂ) → 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))
12 oveq2 6612 . . . . . . 7 (𝑛 = 𝑚 → (𝐴𝑛) = (𝐴𝑚))
13 fveq2 6148 . . . . . . 7 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
1412, 13oveq12d 6622 . . . . . 6 (𝑛 = 𝑚 → ((𝐴𝑛) / (!‘𝑛)) = ((𝐴𝑚) / (!‘𝑚)))
1514adantl 482 . . . . 5 (((𝑚 ∈ ℕ0 ∧ ((𝐴𝑚) / (!‘𝑚)) ∈ ℂ) ∧ 𝑛 = 𝑚) → ((𝐴𝑛) / (!‘𝑛)) = ((𝐴𝑚) / (!‘𝑚)))
16 simpl 473 . . . . 5 ((𝑚 ∈ ℕ0 ∧ ((𝐴𝑚) / (!‘𝑚)) ∈ ℂ) → 𝑚 ∈ ℕ0)
17 simpr 477 . . . . 5 ((𝑚 ∈ ℕ0 ∧ ((𝐴𝑚) / (!‘𝑚)) ∈ ℂ) → ((𝐴𝑚) / (!‘𝑚)) ∈ ℂ)
1811, 15, 16, 17fvmptd 6245 . . . 4 ((𝑚 ∈ ℕ0 ∧ ((𝐴𝑚) / (!‘𝑚)) ∈ ℂ) → (𝐹𝑚) = ((𝐴𝑚) / (!‘𝑚)))
199, 10, 18syl2anc 692 . . 3 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) = ((𝐴𝑚) / (!‘𝑚)))
2019, 10eqeltrd 2698 . 2 ((𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) ∈ ℂ)
211, 2, 7, 8, 20serf0 14345 1 (𝐴 ∈ ℂ → 𝐹 ⇝ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880   / cdiv 10628  0cn0 11236  cexp 12800  !cfa 13000  cli 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-fac 13001  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351
This theorem is referenced by:  etransclem48  39803
  Copyright terms: Public domain W3C validator