Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldivmod Structured version   Visualization version   GIF version

Theorem fldivmod 42198
Description: Expressing the floor of a division by the modulo operator. (Contributed by AV, 6-Jun-2020.)
Assertion
Ref Expression
fldivmod ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))

Proof of Theorem fldivmod
StepHypRef Expression
1 rerpdivcl 11599 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
21flcld 12325 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
32zcnd 11221 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
4 rpcn 11579 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
54adantl 480 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
63, 5mulcld 9813 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) · 𝐵) ∈ ℂ)
7 modcl 12398 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℝ)
87recnd 9821 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℂ)
96, 8pncand 10142 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = ((⌊‘(𝐴 / 𝐵)) · 𝐵))
106, 8addcld 9812 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) ∈ ℂ)
1110, 8subcld 10141 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) ∈ ℂ)
12 rpne0 11586 . . . . 5 (𝐵 ∈ ℝ+𝐵 ≠ 0)
1312adantl 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
1411, 3, 5, 13divmul3d 10582 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = ((⌊‘(𝐴 / 𝐵)) · 𝐵)))
159, 14mpbird 245 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
16 flpmodeq 12399 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴)
1716oveq1d 6440 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = (𝐴 − (𝐴 mod 𝐵)))
1817oveq1d 6440 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
1915, 18eqtr3d 2550 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1938  wne 2684  cfv 5689  (class class class)co 6425  cc 9687  cr 9688  0cc0 9689   + caddc 9692   · cmul 9694  cmin 10015   / cdiv 10431  +crp 11570  cfl 12317   mod cmo 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766  ax-pre-sup 9767
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6832  df-wrecs 7167  df-recs 7229  df-rdg 7267  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-sup 8105  df-inf 8106  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-div 10432  df-nn 10774  df-n0 11046  df-z 11117  df-uz 11424  df-rp 11571  df-fl 12319  df-mod 12395
This theorem is referenced by:  dignn0flhalflem1  42298
  Copyright terms: Public domain W3C validator