Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfv3 Structured version   Visualization version   GIF version

Theorem cycpmfv3 30778
Description: Values outside of the orbit are unchanged by a cycle. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfv3.1 (𝜑𝑋𝐷)
cycpmfv3.2 (𝜑 → ¬ 𝑋 ∈ ran 𝑊)
Assertion
Ref Expression
cycpmfv3 (𝜑 → ((𝐶𝑊)‘𝑋) = 𝑋)

Proof of Theorem cycpmfv3
StepHypRef Expression
1 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . . 4 (𝜑𝐷𝑉)
3 tocycfv.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . . 4 (𝜑𝑊:dom 𝑊1-1𝐷)
51, 2, 3, 4tocycfv 30772 . . 3 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
65fveq1d 6669 . 2 (𝜑 → ((𝐶𝑊)‘𝑋) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))‘𝑋))
7 f1oi 6649 . . . 4 ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊)
8 f1ofn 6613 . . . 4 (( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊))
97, 8mp1i 13 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊))
10 1zzd 12011 . . . . . 6 (𝜑 → 1 ∈ ℤ)
11 cshwf 14158 . . . . . 6 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
123, 10, 11syl2anc 586 . . . . 5 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
1312ffnd 6512 . . . 4 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
14 df-f1 6357 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
154, 14sylib 220 . . . . . . 7 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1615simprd 498 . . . . . 6 (𝜑 → Fun 𝑊)
1716funfnd 6383 . . . . 5 (𝜑𝑊 Fn dom 𝑊)
18 df-rn 5563 . . . . . 6 ran 𝑊 = dom 𝑊
1918fneq2i 6448 . . . . 5 (𝑊 Fn ran 𝑊𝑊 Fn dom 𝑊)
2017, 19sylibr 236 . . . 4 (𝜑𝑊 Fn ran 𝑊)
21 dfdm4 5761 . . . . . 6 dom 𝑊 = ran 𝑊
2221eqimss2i 4023 . . . . 5 ran 𝑊 ⊆ dom 𝑊
23 wrdfn 13873 . . . . . . 7 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
243, 23syl 17 . . . . . 6 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
2524fndmd 6453 . . . . 5 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2622, 25sseqtrid 4016 . . . 4 (𝜑 → ran 𝑊 ⊆ (0..^(♯‘𝑊)))
27 fnco 6462 . . . 4 (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ 𝑊 Fn ran 𝑊 ∧ ran 𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
2813, 20, 26, 27syl3anc 1366 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
29 incom 4175 . . . . 5 (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊)
30 disjdif 4418 . . . . 5 (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ∅
3129, 30eqtr3i 2845 . . . 4 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
3231a1i 11 . . 3 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
33 cycpmfv3.1 . . . 4 (𝜑𝑋𝐷)
34 cycpmfv3.2 . . . 4 (𝜑 → ¬ 𝑋 ∈ ran 𝑊)
3533, 34eldifd 3944 . . 3 (𝜑𝑋 ∈ (𝐷 ∖ ran 𝑊))
36 fvun1 6751 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊 ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ 𝑋 ∈ (𝐷 ∖ ran 𝑊))) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋))
379, 28, 32, 35, 36syl112anc 1369 . 2 (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋))
38 fvresi 6932 . . 3 (𝑋 ∈ (𝐷 ∖ ran 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋)
3935, 38syl 17 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋)
406, 37, 393eqtrd 2859 1 (𝜑 → ((𝐶𝑊)‘𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4288   I cid 5456  ccnv 5551  dom cdm 5552  ran crn 5553  cres 5554  ccom 5556  Fun wfun 6346   Fn wfn 6347  wf 6348  1-1wf1 6349  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7153  0cc0 10534  1c1 10535  cz 11979  ..^cfzo 13031  chash 13688  Word cword 13859   cyclShift ccsh 14146  toCycctocyc 30769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611  ax-pre-sup 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-sup 8903  df-inf 8904  df-card 9365  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-div 11295  df-nn 11636  df-n0 11896  df-z 11980  df-uz 12242  df-rp 12388  df-fz 12891  df-fzo 13032  df-fl 13160  df-mod 13236  df-hash 13689  df-word 13860  df-concat 13919  df-substr 13999  df-pfx 14029  df-csh 14147  df-tocyc 30770
This theorem is referenced by:  cycpmco2  30796  cyc2fvx  30797  cyc3co2  30803
  Copyright terms: Public domain W3C validator