MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsplit2 Structured version   Visualization version   GIF version

Theorem frlmsplit2 20913
Description: Restriction is homomorphic on free modules. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmsplit2.y 𝑌 = (𝑅 freeLMod 𝑈)
frlmsplit2.z 𝑍 = (𝑅 freeLMod 𝑉)
frlmsplit2.b 𝐵 = (Base‘𝑌)
frlmsplit2.c 𝐶 = (Base‘𝑍)
frlmsplit2.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
frlmsplit2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem frlmsplit2
StepHypRef Expression
1 simp1 1131 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑅 ∈ Ring)
2 simp2 1132 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
3 frlmsplit2.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝑈)
4 frlmsplit2.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2820 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))
63, 4, 5frlmlss 20891 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
71, 2, 6syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)))
8 eqid 2820 . . . . . 6 (Base‘((ringLMod‘𝑅) ↑s 𝑈)) = (Base‘((ringLMod‘𝑅) ↑s 𝑈))
98, 5lssss 19704 . . . . 5 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)))
10 resmpt 5902 . . . . 5 (𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
117, 9, 103syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = (𝑥𝐵 ↦ (𝑥𝑉)))
12 frlmsplit2.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
1311, 12syl6eqr 2873 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = 𝐹)
14 rlmlmod 19973 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
15 eqid 2820 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑈) = ((ringLMod‘𝑅) ↑s 𝑈)
16 eqid 2820 . . . . . . 7 ((ringLMod‘𝑅) ↑s 𝑉) = ((ringLMod‘𝑅) ↑s 𝑉)
17 eqid 2820 . . . . . . 7 (Base‘((ringLMod‘𝑅) ↑s 𝑉)) = (Base‘((ringLMod‘𝑅) ↑s 𝑉))
18 eqid 2820 . . . . . . 7 (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) = (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉))
1915, 16, 8, 17, 18pwssplit3 19829 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2014, 19syl3an1 1158 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
21 eqid 2820 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵)
225, 21reslmhm 19820 . . . . 5 (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ∈ (((ringLMod‘𝑅) ↑s 𝑈) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑈))) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
2320, 7, 22syl2anc 586 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)))
24143ad2ant1 1128 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (ringLMod‘𝑅) ∈ LMod)
25 simp3 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
262, 25ssexd 5225 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
2716pwslmod 19738 . . . . . 6 (((ringLMod‘𝑅) ∈ LMod ∧ 𝑉 ∈ V) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
2824, 26, 27syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod)
29 frlmsplit2.z . . . . . . 7 𝑍 = (𝑅 freeLMod 𝑉)
30 frlmsplit2.c . . . . . . 7 𝐶 = (Base‘𝑍)
31 eqid 2820 . . . . . . 7 (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉))
3229, 30, 31frlmlss 20891 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
331, 26, 32syl2anc 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)))
3411rneqd 5805 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) = ran (𝑥𝐵 ↦ (𝑥𝑉)))
35 eqid 2820 . . . . . . . . . . . . 13 (Base‘𝑅) = (Base‘𝑅)
363, 35, 4frlmbasf 20900 . . . . . . . . . . . 12 ((𝑈𝑋𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
372, 36sylan 582 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥:𝑈⟶(Base‘𝑅))
38 simpl3 1188 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑉𝑈)
3937, 38fssresd 6542 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉):𝑉⟶(Base‘𝑅))
40 fvex 6680 . . . . . . . . . . . 12 (Base‘𝑅) ∈ V
41 elmapg 8416 . . . . . . . . . . . 12 (((Base‘𝑅) ∈ V ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4240, 26, 41sylancr 589 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4342adantr 483 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ↔ (𝑥𝑉):𝑉⟶(Base‘𝑅)))
4439, 43mpbird 259 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉))
45 eqid 2820 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
463, 45, 4frlmbasfsupp 20898 . . . . . . . . . . 11 ((𝑈𝑋𝑥𝐵) → 𝑥 finSupp (0g𝑅))
472, 46sylan 582 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → 𝑥 finSupp (0g𝑅))
48 fvexd 6682 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (0g𝑅) ∈ V)
4947, 48fsuppres 8855 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) finSupp (0g𝑅))
5029, 35, 45, 30frlmelbas 20896 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
511, 26, 50syl2anc 586 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5251adantr 483 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → ((𝑥𝑉) ∈ 𝐶 ↔ ((𝑥𝑉) ∈ ((Base‘𝑅) ↑m 𝑉) ∧ (𝑥𝑉) finSupp (0g𝑅))))
5344, 49, 52mpbir2and 711 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑥𝐵) → (𝑥𝑉) ∈ 𝐶)
5453fmpttd 6876 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑥𝐵 ↦ (𝑥𝑉)):𝐵𝐶)
5554frnd 6518 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran (𝑥𝐵 ↦ (𝑥𝑉)) ⊆ 𝐶)
5634, 55eqsstrd 4002 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶)
57 eqid 2820 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶) = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)
5857, 31reslmhm2b 19822 . . . . 5 ((((ringLMod‘𝑅) ↑s 𝑉) ∈ LMod ∧ 𝐶 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝑉)) ∧ ran ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ⊆ 𝐶) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
5928, 33, 56, 58syl3anc 1366 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom ((ringLMod‘𝑅) ↑s 𝑉)) ↔ ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))))
6023, 59mpbid 234 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → ((𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝑈)) ↦ (𝑥𝑉)) ↾ 𝐵) ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6113, 60eqeltrrd 2913 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
623, 4frlmpws 20890 . . . 4 ((𝑅 ∈ Ring ∧ 𝑈𝑋) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
631, 2, 62syl2anc 586 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵))
6429, 30frlmpws 20890 . . . 4 ((𝑅 ∈ Ring ∧ 𝑉 ∈ V) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
651, 26, 64syl2anc 586 . . 3 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝑍 = (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶))
6663, 65oveq12d 7171 . 2 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → (𝑌 LMHom 𝑍) = ((((ringLMod‘𝑅) ↑s 𝑈) ↾s 𝐵) LMHom (((ringLMod‘𝑅) ↑s 𝑉) ↾s 𝐶)))
6761, 66eleqtrrd 2915 1 ((𝑅 ∈ Ring ∧ 𝑈𝑋𝑉𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  Vcvv 3493  wss 3933   class class class wbr 5063  cmpt 5143  ran crn 5553  cres 5554  wf 6348  cfv 6352  (class class class)co 7153  m cmap 8403   finSupp cfsupp 8830  Basecbs 16479  s cress 16480  0gc0g 16709  s cpws 16716  Ringcrg 19293  LModclmod 19630  LSubSpclss 19699   LMHom clmhm 19787  ringLModcrglmod 19937   freeLMod cfrlm 20886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-of 7406  df-om 7578  df-1st 7686  df-2nd 7687  df-supp 7828  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-map 8405  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fsupp 8831  df-sup 8903  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-2 11698  df-3 11699  df-4 11700  df-5 11701  df-6 11702  df-7 11703  df-8 11704  df-9 11705  df-n0 11896  df-z 11980  df-dec 12097  df-uz 12242  df-fz 12891  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-prds 16717  df-pws 16719  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-ghm 18352  df-mgp 19236  df-ur 19248  df-ring 19295  df-subrg 19529  df-lmod 19632  df-lss 19700  df-lmhm 19790  df-sra 19940  df-rgmod 19941  df-dsmm 20872  df-frlm 20887
This theorem is referenced by:  frlmsslss  20914
  Copyright terms: Public domain W3C validator