MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2 Structured version   Visualization version   GIF version

Theorem funcres2 17146
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
funcres2 (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Func (𝐷cat 𝑅)) ⊆ (𝐶 Func 𝐷))

Proof of Theorem funcres2
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17110 . . 3 Rel (𝐶 Func (𝐷cat 𝑅))
21a1i 11 . 2 (𝑅 ∈ (Subcat‘𝐷) → Rel (𝐶 Func (𝐷cat 𝑅)))
3 simpr 487 . . . . 5 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔)
4 eqid 2820 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2820 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
6 simpl 485 . . . . . 6 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑅 ∈ (Subcat‘𝐷))
7 eqidd 2821 . . . . . . 7 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → dom dom 𝑅 = dom dom 𝑅)
86, 7subcfn 17089 . . . . . 6 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑅 Fn (dom dom 𝑅 × dom dom 𝑅))
9 eqid 2820 . . . . . . . 8 (Base‘(𝐷cat 𝑅)) = (Base‘(𝐷cat 𝑅))
104, 9, 3funcf1 17114 . . . . . . 7 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓:(Base‘𝐶)⟶(Base‘(𝐷cat 𝑅)))
11 eqid 2820 . . . . . . . . 9 (𝐷cat 𝑅) = (𝐷cat 𝑅)
12 eqid 2820 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
13 subcrcl 17064 . . . . . . . . . 10 (𝑅 ∈ (Subcat‘𝐷) → 𝐷 ∈ Cat)
1413adantr 483 . . . . . . . . 9 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝐷 ∈ Cat)
156, 8, 12subcss1 17090 . . . . . . . . 9 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → dom dom 𝑅 ⊆ (Base‘𝐷))
1611, 12, 14, 8, 15rescbas 17077 . . . . . . . 8 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → dom dom 𝑅 = (Base‘(𝐷cat 𝑅)))
1716feq3d 6482 . . . . . . 7 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → (𝑓:(Base‘𝐶)⟶dom dom 𝑅𝑓:(Base‘𝐶)⟶(Base‘(𝐷cat 𝑅))))
1810, 17mpbird 259 . . . . . 6 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓:(Base‘𝐶)⟶dom dom 𝑅)
19 eqid 2820 . . . . . . . 8 (Hom ‘(𝐷cat 𝑅)) = (Hom ‘(𝐷cat 𝑅))
20 simplr 767 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔)
21 simprl 769 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
22 simprr 771 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
234, 5, 19, 20, 21, 22funcf2 17116 . . . . . . 7 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘(𝐷cat 𝑅))(𝑓𝑦)))
2411, 12, 14, 8, 15reschom 17078 . . . . . . . . . 10 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑅 = (Hom ‘(𝐷cat 𝑅)))
2524adantr 483 . . . . . . . . 9 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑅 = (Hom ‘(𝐷cat 𝑅)))
2625oveqd 7154 . . . . . . . 8 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑓𝑥)𝑅(𝑓𝑦)) = ((𝑓𝑥)(Hom ‘(𝐷cat 𝑅))(𝑓𝑦)))
2726feq3d 6482 . . . . . . 7 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)𝑅(𝑓𝑦)) ↔ (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)(Hom ‘(𝐷cat 𝑅))(𝑓𝑦))))
2823, 27mpbird 259 . . . . . 6 (((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥𝑔𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶((𝑓𝑥)𝑅(𝑓𝑦)))
294, 5, 6, 8, 18, 28funcres2b 17145 . . . . 5 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → (𝑓(𝐶 Func 𝐷)𝑔𝑓(𝐶 Func (𝐷cat 𝑅))𝑔))
303, 29mpbird 259 . . . 4 ((𝑅 ∈ (Subcat‘𝐷) ∧ 𝑓(𝐶 Func (𝐷cat 𝑅))𝑔) → 𝑓(𝐶 Func 𝐷)𝑔)
3130ex 415 . . 3 (𝑅 ∈ (Subcat‘𝐷) → (𝑓(𝐶 Func (𝐷cat 𝑅))𝑔𝑓(𝐶 Func 𝐷)𝑔))
32 df-br 5048 . . 3 (𝑓(𝐶 Func (𝐷cat 𝑅))𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func (𝐷cat 𝑅)))
33 df-br 5048 . . 3 (𝑓(𝐶 Func 𝐷)𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷))
3431, 32, 333imtr3g 297 . 2 (𝑅 ∈ (Subcat‘𝐷) → (⟨𝑓, 𝑔⟩ ∈ (𝐶 Func (𝐷cat 𝑅)) → ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷)))
352, 34relssdv 5642 1 (𝑅 ∈ (Subcat‘𝐷) → (𝐶 Func (𝐷cat 𝑅)) ⊆ (𝐶 Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3919  cop 4554   class class class wbr 5047  dom cdm 5536  Rel wrel 5541  wf 6332  cfv 6336  (class class class)co 7137  Basecbs 16461  Hom chom 16554  Catccat 16913  cat cresc 17056  Subcatcsubc 17057   Func cfunc 17102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-om 7562  df-1st 7670  df-2nd 7671  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-er 8270  df-map 8389  df-pm 8390  df-ixp 8443  df-en 8491  df-dom 8492  df-sdom 8493  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-nn 11620  df-2 11682  df-3 11683  df-4 11684  df-5 11685  df-6 11686  df-7 11687  df-8 11688  df-9 11689  df-n0 11880  df-z 11964  df-dec 12081  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-hom 16567  df-cco 16568  df-cat 16917  df-cid 16918  df-homf 16919  df-ssc 17058  df-resc 17059  df-subc 17060  df-func 17106
This theorem is referenced by:  fthres2  17180  ressffth  17186  funcsetcres2  17331
  Copyright terms: Public domain W3C validator