![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzosplitsnm1 | Structured version Visualization version GIF version |
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
Ref | Expression |
---|---|
fzosplitsnm1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 11735 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → 𝐵 ∈ ℤ) | |
2 | 1 | zcnd 11521 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → 𝐵 ∈ ℂ) |
3 | 2 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 ∈ ℂ) |
4 | ax-1cn 10032 | . . . 4 ⊢ 1 ∈ ℂ | |
5 | npcan 10328 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵) | |
6 | 5 | eqcomd 2657 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1)) |
7 | 3, 4, 6 | sylancl 695 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 = ((𝐵 − 1) + 1)) |
8 | 7 | oveq2d 6706 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1))) |
9 | eluzp1m1 11749 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ (ℤ≥‘𝐴)) | |
10 | 1 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → 𝐵 ∈ ℤ) |
11 | peano2zm 11458 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ) | |
12 | uzid 11740 | . . . . 5 ⊢ ((𝐵 − 1) ∈ ℤ → (𝐵 − 1) ∈ (ℤ≥‘(𝐵 − 1))) | |
13 | peano2uz 11779 | . . . . 5 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘(𝐵 − 1)) → ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1))) | |
14 | 10, 11, 12, 13 | 4syl 19 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1))) |
15 | elfzuzb 12374 | . . . 4 ⊢ ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) ↔ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) ∧ ((𝐵 − 1) + 1) ∈ (ℤ≥‘(𝐵 − 1)))) | |
16 | 9, 14, 15 | sylanbrc 699 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1))) |
17 | fzosplit 12540 | . . 3 ⊢ ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1)))) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1)))) |
19 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (𝐵 − 1) ∈ ℤ) |
20 | 19 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐵 − 1) ∈ ℤ) |
21 | fzosn 12578 | . . . 4 ⊢ ((𝐵 − 1) ∈ ℤ → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)}) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)}) |
23 | 22 | uneq2d 3800 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
24 | 8, 18, 23 | 3eqtrd 2689 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∪ cun 3605 {csn 4210 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 1c1 9975 + caddc 9977 − cmin 10304 ℤcz 11415 ℤ≥cuz 11725 ...cfz 12364 ..^cfzo 12504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 |
This theorem is referenced by: elfzonlteqm1 12583 pthdlem1 26718 clwwlkccatlem 27331 |
Copyright terms: Public domain | W3C validator |