MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfzsplitl Structured version   Visualization version   GIF version

Theorem gsummptfzsplitl 18257
Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019.)
Hypotheses
Ref Expression
gsummptfzsplit.b 𝐵 = (Base‘𝐺)
gsummptfzsplit.p + = (+g𝐺)
gsummptfzsplit.g (𝜑𝐺 ∈ CMnd)
gsummptfzsplit.n (𝜑𝑁 ∈ ℕ0)
gsummptfzsplitl.y ((𝜑𝑘 ∈ (0...𝑁)) → 𝑌𝐵)
Assertion
Ref Expression
gsummptfzsplitl (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝐺(𝑘)   𝑌(𝑘)

Proof of Theorem gsummptfzsplitl
StepHypRef Expression
1 gsummptfzsplit.b . 2 𝐵 = (Base‘𝐺)
2 gsummptfzsplit.p . 2 + = (+g𝐺)
3 gsummptfzsplit.g . 2 (𝜑𝐺 ∈ CMnd)
4 fzfid 12715 . 2 (𝜑 → (0...𝑁) ∈ Fin)
5 gsummptfzsplitl.y . 2 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑌𝐵)
6 incom 3785 . . . 4 ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁))
76a1i 11 . . 3 (𝜑 → ((1...𝑁) ∩ {0}) = ({0} ∩ (1...𝑁)))
8 1e0p1 11499 . . . . . 6 1 = (0 + 1)
98oveq1i 6617 . . . . 5 (1...𝑁) = ((0 + 1)...𝑁)
109a1i 11 . . . 4 (𝜑 → (1...𝑁) = ((0 + 1)...𝑁))
1110ineq2d 3794 . . 3 (𝜑 → ({0} ∩ (1...𝑁)) = ({0} ∩ ((0 + 1)...𝑁)))
12 gsummptfzsplit.n . . . 4 (𝜑𝑁 ∈ ℕ0)
13 elnn0uz 11672 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
1413biimpi 206 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
15 fzpreddisj 12335 . . . 4 (𝑁 ∈ (ℤ‘0) → ({0} ∩ ((0 + 1)...𝑁)) = ∅)
1612, 14, 153syl 18 . . 3 (𝜑 → ({0} ∩ ((0 + 1)...𝑁)) = ∅)
177, 11, 163eqtrd 2659 . 2 (𝜑 → ((1...𝑁) ∩ {0}) = ∅)
18 fzpred 12334 . . . 4 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁)))
1912, 14, 183syl 18 . . 3 (𝜑 → (0...𝑁) = ({0} ∪ ((0 + 1)...𝑁)))
20 uncom 3737 . . . 4 ({0} ∪ ((0 + 1)...𝑁)) = (((0 + 1)...𝑁) ∪ {0})
21 0p1e1 11079 . . . . . 6 (0 + 1) = 1
2221oveq1i 6617 . . . . 5 ((0 + 1)...𝑁) = (1...𝑁)
2322uneq1i 3743 . . . 4 (((0 + 1)...𝑁) ∪ {0}) = ((1...𝑁) ∪ {0})
2420, 23eqtri 2643 . . 3 ({0} ∪ ((0 + 1)...𝑁)) = ((1...𝑁) ∪ {0})
2519, 24syl6eq 2671 . 2 (𝜑 → (0...𝑁) = ((1...𝑁) ∪ {0}))
261, 2, 3, 4, 5, 17, 25gsummptfidmsplit 18254 1 (𝜑 → (𝐺 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑌)) = ((𝐺 Σg (𝑘 ∈ (1...𝑁) ↦ 𝑌)) + (𝐺 Σg (𝑘 ∈ {0} ↦ 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cun 3554  cin 3555  c0 3893  {csn 4150  cmpt 4675  cfv 5849  (class class class)co 6607  0cc0 9883  1c1 9884   + caddc 9886  0cn0 11239  cuz 11634  ...cfz 12271  Basecbs 15784  +gcplusg 15865   Σg cgsu 16025  CMndccmn 18117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-iin 4490  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-1st 7116  df-2nd 7117  df-supp 7244  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-fsupp 8223  df-oi 8362  df-card 8712  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-n0 11240  df-z 11325  df-uz 11635  df-fz 12272  df-fzo 12410  df-seq 12745  df-hash 13061  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-0g 16026  df-gsum 16027  df-mre 16170  df-mrc 16171  df-acs 16173  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-submnd 17260  df-cntz 17674  df-cmn 18119
This theorem is referenced by:  srgbinomlem4  18467  chfacfscmulgsum  20587  chfacfpmmulgsum  20591  cpmadugsumlemF  20603
  Copyright terms: Public domain W3C validator