MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzsubmcl Structured version   Visualization version   GIF version

Theorem gsumzsubmcl 18312
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 3-Jun-2019.)
Hypotheses
Ref Expression
gsumzsubmcl.0 0 = (0g𝐺)
gsumzsubmcl.z 𝑍 = (Cntz‘𝐺)
gsumzsubmcl.g (𝜑𝐺 ∈ Mnd)
gsumzsubmcl.a (𝜑𝐴𝑉)
gsumzsubmcl.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
gsumzsubmcl.f (𝜑𝐹:𝐴𝑆)
gsumzsubmcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzsubmcl.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzsubmcl (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆)

Proof of Theorem gsumzsubmcl
StepHypRef Expression
1 eqid 2621 . . 3 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
2 eqid 2621 . . 3 (0g‘(𝐺s 𝑆)) = (0g‘(𝐺s 𝑆))
3 eqid 2621 . . 3 (Cntz‘(𝐺s 𝑆)) = (Cntz‘(𝐺s 𝑆))
4 gsumzsubmcl.s . . . 4 (𝜑𝑆 ∈ (SubMnd‘𝐺))
5 eqid 2621 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
65submmnd 17348 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (𝐺s 𝑆) ∈ Mnd)
74, 6syl 17 . . 3 (𝜑 → (𝐺s 𝑆) ∈ Mnd)
8 gsumzsubmcl.a . . 3 (𝜑𝐴𝑉)
9 gsumzsubmcl.f . . . 4 (𝜑𝐹:𝐴𝑆)
105submbas 17349 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
114, 10syl 17 . . . . 5 (𝜑𝑆 = (Base‘(𝐺s 𝑆)))
1211feq3d 6030 . . . 4 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘(𝐺s 𝑆))))
139, 12mpbid 222 . . 3 (𝜑𝐹:𝐴⟶(Base‘(𝐺s 𝑆)))
14 gsumzsubmcl.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
15 frn 6051 . . . . . 6 (𝐹:𝐴𝑆 → ran 𝐹𝑆)
169, 15syl 17 . . . . 5 (𝜑 → ran 𝐹𝑆)
1714, 16ssind 3835 . . . 4 (𝜑 → ran 𝐹 ⊆ ((𝑍‘ran 𝐹) ∩ 𝑆))
18 gsumzsubmcl.z . . . . . 6 𝑍 = (Cntz‘𝐺)
195, 18, 3resscntz 17758 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ran 𝐹𝑆) → ((Cntz‘(𝐺s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆))
204, 16, 19syl2anc 693 . . . 4 (𝜑 → ((Cntz‘(𝐺s 𝑆))‘ran 𝐹) = ((𝑍‘ran 𝐹) ∩ 𝑆))
2117, 20sseqtr4d 3640 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘(𝐺s 𝑆))‘ran 𝐹))
22 gsumzsubmcl.w . . . 4 (𝜑𝐹 finSupp 0 )
23 gsumzsubmcl.0 . . . . . 6 0 = (0g𝐺)
245, 23subm0 17350 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 0 = (0g‘(𝐺s 𝑆)))
254, 24syl 17 . . . 4 (𝜑0 = (0g‘(𝐺s 𝑆)))
2622, 25breqtrd 4677 . . 3 (𝜑𝐹 finSupp (0g‘(𝐺s 𝑆)))
271, 2, 3, 7, 8, 13, 21, 26gsumzcl 18306 . 2 (𝜑 → ((𝐺s 𝑆) Σg 𝐹) ∈ (Base‘(𝐺s 𝑆)))
288, 4, 9, 5gsumsubm 17367 . 2 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺s 𝑆) Σg 𝐹))
2927, 28, 113eltr4d 2715 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1482  wcel 1989  cin 3571  wss 3572   class class class wbr 4651  ran crn 5113  wf 5882  cfv 5886  (class class class)co 6647   finSupp cfsupp 8272  Basecbs 15851  s cress 15852  0gc0g 16094   Σg cgsu 16095  Mndcmnd 17288  SubMndcsubmnd 17328  Cntzccntz 17742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-oi 8412  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-fzo 12462  df-seq 12797  df-hash 13113  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-0g 16096  df-gsum 16097  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-submnd 17330  df-cntz 17744
This theorem is referenced by:  gsumsubmcl  18313  gsumzadd  18316  dprdfadd  18413  dprdfeq0  18415  dprdlub  18419
  Copyright terms: Public domain W3C validator