Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzadd Structured version   Visualization version   GIF version

 Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
Assertion
Ref Expression
gsumzadd (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))

Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.b . 2 𝐵 = (Base‘𝐺)
2 gsumzadd.0 . 2 0 = (0g𝐺)
3 gsumzadd.p . 2 + = (+g𝐺)
4 gsumzadd.z . 2 𝑍 = (Cntz‘𝐺)
5 gsumzadd.g . 2 (𝜑𝐺 ∈ Mnd)
7 gsumzadd.fn . 2 (𝜑𝐹 finSupp 0 )
8 gsumzadd.hn . 2 (𝜑𝐻 finSupp 0 )
9 eqid 2621 . 2 ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) supp 0 )
10 gsumzadd.f . . 3 (𝜑𝐹:𝐴𝑆)
11 gsumzadd.s . . . 4 (𝜑𝑆 ∈ (SubMnd‘𝐺))
121submss 17290 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆𝐵)
1311, 12syl 17 . . 3 (𝜑𝑆𝐵)
1410, 13fssd 6024 . 2 (𝜑𝐹:𝐴𝐵)
15 gsumzadd.h . . 3 (𝜑𝐻:𝐴𝑆)
1615, 13fssd 6024 . 2 (𝜑𝐻:𝐴𝐵)
17 gsumzadd.c . . 3 (𝜑𝑆 ⊆ (𝑍𝑆))
18 frn 6020 . . . 4 (𝐹:𝐴𝑆 → ran 𝐹𝑆)
1910, 18syl 17 . . 3 (𝜑 → ran 𝐹𝑆)
204cntzidss 17710 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐹𝑆) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2117, 19, 20syl2anc 692 . 2 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
22 frn 6020 . . . 4 (𝐻:𝐴𝑆 → ran 𝐻𝑆)
2315, 22syl 17 . . 3 (𝜑 → ran 𝐻𝑆)
244cntzidss 17710 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐻𝑆) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
2517, 23, 24syl2anc 692 . 2 (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
263submcl 17293 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
27263expb 1263 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2811, 27sylan 488 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
29 inidm 3806 . . . . 5 (𝐴𝐴) = 𝐴
3028, 10, 15, 6, 6, 29off 6877 . . . 4 (𝜑 → (𝐹𝑓 + 𝐻):𝐴𝑆)
31 frn 6020 . . . 4 ((𝐹𝑓 + 𝐻):𝐴𝑆 → ran (𝐹𝑓 + 𝐻) ⊆ 𝑆)
3230, 31syl 17 . . 3 (𝜑 → ran (𝐹𝑓 + 𝐻) ⊆ 𝑆)
334cntzidss 17710 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran (𝐹𝑓 + 𝐻) ⊆ 𝑆) → ran (𝐹𝑓 + 𝐻) ⊆ (𝑍‘ran (𝐹𝑓 + 𝐻)))
3417, 32, 33syl2anc 692 . 2 (𝜑 → ran (𝐹𝑓 + 𝐻) ⊆ (𝑍‘ran (𝐹𝑓 + 𝐻)))
3517adantr 481 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍𝑆))
3613adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆𝐵)
375adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝐺 ∈ Mnd)
38 vex 3193 . . . . . . . 8 𝑥 ∈ V
3938a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑥 ∈ V)
4011adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ∈ (SubMnd‘𝐺))
41 simpl 473 . . . . . . . 8 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑥𝐴)
42 fssres 6037 . . . . . . . 8 ((𝐻:𝐴𝑆𝑥𝐴) → (𝐻𝑥):𝑥𝑆)
4315, 41, 42syl2an 494 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥):𝑥𝑆)
4425adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
45 resss 5391 . . . . . . . . 9 (𝐻𝑥) ⊆ 𝐻
46 rnss 5324 . . . . . . . . 9 ((𝐻𝑥) ⊆ 𝐻 → ran (𝐻𝑥) ⊆ ran 𝐻)
4745, 46ax-mp 5 . . . . . . . 8 ran (𝐻𝑥) ⊆ ran 𝐻
484cntzidss 17710 . . . . . . . 8 ((ran 𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻𝑥) ⊆ ran 𝐻) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
4944, 47, 48sylancl 693 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
50 ffun 6015 . . . . . . . . . . 11 (𝐻:𝐴𝑆 → Fun 𝐻)
5115, 50syl 17 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
52 funres 5897 . . . . . . . . . 10 (Fun 𝐻 → Fun (𝐻𝑥))
5351, 52syl 17 . . . . . . . . 9 (𝜑 → Fun (𝐻𝑥))
5453adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → Fun (𝐻𝑥))
558fsuppimpd 8242 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ∈ Fin)
5655adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻 supp 0 ) ∈ Fin)
57 fex 6455 . . . . . . . . . . . 12 ((𝐻:𝐴𝑆𝐴𝑉) → 𝐻 ∈ V)
5815, 6, 57syl2anc 692 . . . . . . . . . . 11 (𝜑𝐻 ∈ V)
59 fvex 6168 . . . . . . . . . . . 12 (0g𝐺) ∈ V
602, 59eqeltri 2694 . . . . . . . . . . 11 0 ∈ V
61 ressuppss 7274 . . . . . . . . . . 11 ((𝐻 ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
6258, 60, 61sylancl 693 . . . . . . . . . 10 (𝜑 → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
6362adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
64 ssfi 8140 . . . . . . . . 9 (((𝐻 supp 0 ) ∈ Fin ∧ ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 )) → ((𝐻𝑥) supp 0 ) ∈ Fin)
6556, 63, 64syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ∈ Fin)
66 resfunexg 6444 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ V) → (𝐻𝑥) ∈ V)
6751, 38, 66sylancl 693 . . . . . . . . . 10 (𝜑 → (𝐻𝑥) ∈ V)
68 isfsupp 8239 . . . . . . . . . 10 (((𝐻𝑥) ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6967, 60, 68sylancl 693 . . . . . . . . 9 (𝜑 → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
7069adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
7154, 65, 70mpbir2and 956 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥) finSupp 0 )
722, 4, 37, 39, 40, 43, 49, 71gsumzsubmcl 18258 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ 𝑆)
7372snssd 4316 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆)
741, 4cntz2ss 17705 . . . . 5 ((𝑆𝐵 ∧ {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
7536, 73, 74syl2anc 692 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
7635, 75sstrd 3598 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
77 eldifi 3716 . . . . 5 (𝑘 ∈ (𝐴𝑥) → 𝑘𝐴)
7877adantl 482 . . . 4 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑘𝐴)
79 ffvelrn 6323 . . . 4 ((𝐹:𝐴𝑆𝑘𝐴) → (𝐹𝑘) ∈ 𝑆)
8010, 78, 79syl2an 494 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ 𝑆)
8176, 80sseldd 3589 . 2 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
821, 2, 3, 4, 5, 6, 7, 8, 9, 14, 16, 21, 25, 34, 81gsumzaddlem 18261 1 (𝜑 → (𝐺 Σg (𝐹𝑓 + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  Vcvv 3190   ∖ cdif 3557   ∪ cun 3558   ⊆ wss 3560  {csn 4155   class class class wbr 4623  ran crn 5085   ↾ cres 5086  Fun wfun 5851  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615   ∘𝑓 cof 6860   supp csupp 7255  Fincfn 7915   finSupp cfsupp 8235  Basecbs 15800  +gcplusg 15881  0gc0g 16040   Σg cgsu 16041  Mndcmnd 17234  SubMndcsubmnd 17274  Cntzccntz 17688 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-seq 12758  df-hash 13074  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-0g 16042  df-gsum 16043  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-cntz 17690 This theorem is referenced by:  gsumadd  18263  gsumzsplit  18267
 Copyright terms: Public domain W3C validator