Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblempty Structured version   Visualization version   GIF version

Theorem iblempty 39485
 Description: The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iblempty ∅ ∈ 𝐿1

Proof of Theorem iblempty
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbf0 39477 . 2 ∅ ∈ MblFn
2 fconstmpt 5123 . . . . . . 7 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
32eqcomi 2630 . . . . . 6 (𝑥 ∈ ℝ ↦ 0) = (ℝ × {0})
43fveq2i 6151 . . . . 5 (∫2‘(𝑥 ∈ ℝ ↦ 0)) = (∫2‘(ℝ × {0}))
5 itg20 23410 . . . . 5 (∫2‘(ℝ × {0})) = 0
64, 5eqtri 2643 . . . 4 (∫2‘(𝑥 ∈ ℝ ↦ 0)) = 0
7 0re 9984 . . . 4 0 ∈ ℝ
86, 7eqeltri 2694 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ
98rgenw 2919 . 2 𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ
10 noel 3895 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
1110intnanr 960 . . . . . . . 8 ¬ (𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘))))
1211iffalsei 4068 . . . . . . 7 if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = 0
1312eqcomi 2630 . . . . . 6 0 = if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)
1413a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 = if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))
1514mpteq2dva 4704 . . . 4 (⊤ → (𝑥 ∈ ℝ ↦ 0) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))
16 eqidd 2622 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))))
17 dm0 5299 . . . . 5 dom ∅ = ∅
1817a1i 11 . . . 4 (⊤ → dom ∅ = ∅)
1910intnan 959 . . . . 5 ¬ (⊤ ∧ 𝑥 ∈ ∅)
2019pm2.21i 116 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → (∅‘𝑥) = 0)
2115, 16, 18, 20isibl 23438 . . 3 (⊤ → (∅ ∈ 𝐿1 ↔ (∅ ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ)))
2221trud 1490 . 2 (∅ ∈ 𝐿1 ↔ (∅ ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ))
231, 9, 22mpbir2an 954 1 ∅ ∈ 𝐿1
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   = wceq 1480  ⊤wtru 1481   ∈ wcel 1987  ∀wral 2907  ∅c0 3891  ifcif 4058  {csn 4148   class class class wbr 4613   ↦ cmpt 4673   × cxp 5072  dom cdm 5074  ‘cfv 5847  (class class class)co 6604  ℝcr 9879  0cc0 9880  ici 9882   ≤ cle 10019   / cdiv 10628  3c3 11015  ...cfz 12268  ↑cexp 12800  ℜcre 13771  MblFncmbf 23289  ∫2citg2 23291  𝐿1cibl 23292 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-disj 4584  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-ofr 6851  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xadd 11891  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-xmet 19658  df-met 19659  df-ovol 23140  df-vol 23141  df-mbf 23294  df-itg1 23295  df-itg2 23296  df-ibl 23297  df-0p 23343 This theorem is referenced by:  itgvol0  39488
 Copyright terms: Public domain W3C validator