Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iocborel Structured version   Visualization version   GIF version

Theorem iocborel 39911
 Description: A left-open, right-closed interval is a Borel set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
iocborel.a (𝜑𝐴 ∈ ℝ*)
iocborel.c (𝜑𝐶 ∈ ℝ)
iocborel.t 𝐽 = (topGen‘ran (,))
iocborel.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
iocborel (𝜑 → (𝐴(,]𝐶) ∈ 𝐵)

Proof of Theorem iocborel
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 iocborel.a . . . 4 (𝜑𝐴 ∈ ℝ*)
2 iocborel.c . . . 4 (𝜑𝐶 ∈ ℝ)
31, 2iooiinioc 39229 . . 3 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) = (𝐴(,]𝐶))
43eqcomd 2627 . 2 (𝜑 → (𝐴(,]𝐶) = 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))))
5 iocborel.t . . . . . . 7 𝐽 = (topGen‘ran (,))
6 iocborel.b . . . . . . 7 𝐵 = (SalGen‘𝐽)
75, 6bor1sal 39910 . . . . . 6 𝐵 ∈ SAlg
87a1i 11 . . . . 5 (⊤ → 𝐵 ∈ SAlg)
9 nnct 12736 . . . . . 6 ℕ ≼ ω
109a1i 11 . . . . 5 (⊤ → ℕ ≼ ω)
11 nnn0 39094 . . . . . 6 ℕ ≠ ∅
1211a1i 11 . . . . 5 (⊤ → ℕ ≠ ∅)
135, 6iooborel 39906 . . . . . 6 (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵
1413a1i 11 . . . . 5 ((⊤ ∧ 𝑛 ∈ ℕ) → (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵)
158, 10, 12, 14saliincl 39882 . . . 4 (⊤ → 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵)
1615trud 1490 . . 3 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵
1716a1i 11 . 2 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐶 + (1 / 𝑛))) ∈ 𝐵)
184, 17eqeltrd 2698 1 (𝜑 → (𝐴(,]𝐶) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480  ⊤wtru 1481   ∈ wcel 1987   ≠ wne 2790  ∅c0 3897  ∩ ciin 4493   class class class wbr 4623  ran crn 5085  ‘cfv 5857  (class class class)co 6615  ωcom 7027   ≼ cdom 7913  ℝcr 9895  1c1 9897   + caddc 9899  ℝ*cxr 10033   / cdiv 10644  ℕcn 10980  (,)cioo 12133  (,]cioc 12134  topGenctg 16038  SAlgcsalg 39865  SalGencsalgen 39869 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-inf 8309  df-card 8725  df-acn 8728  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-ioo 12137  df-ioc 12138  df-fl 12549  df-topgen 16044  df-top 20639  df-bases 20690  df-salg 39866  df-salgen 39870 This theorem is referenced by:  incsmflem  40287  decsmflem  40311  smfsuplem2  40355
 Copyright terms: Public domain W3C validator