MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgra1 Structured version   Visualization version   GIF version

Theorem iscgra1 26596
Description: A special version of iscgra 26595 where one distance is known to be equal. In this case, angle congruence can be written with only one quantifier. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
iscgra1.m = (dist‘𝐺)
iscgra1.1 (𝜑𝐴𝐵)
iscgra1.2 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
iscgra1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥   𝑥,𝐺   𝑥,𝐼   𝑥,𝑃
Allowed substitution hint:   (𝑥)

Proof of Theorem iscgra1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . 3 𝑃 = (Base‘𝐺)
2 iscgra.i . . 3 𝐼 = (Itv‘𝐺)
3 iscgra.k . . 3 𝐾 = (hlG‘𝐺)
4 iscgra.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 iscgra.a . . 3 (𝜑𝐴𝑃)
6 iscgra.b . . 3 (𝜑𝐵𝑃)
7 iscgra.c . . 3 (𝜑𝐶𝑃)
8 iscgra.d . . 3 (𝜑𝐷𝑃)
9 iscgra.e . . 3 (𝜑𝐸𝑃)
10 iscgra.f . . 3 (𝜑𝐹𝑃)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10iscgra 26595 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑦𝑃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)))
129ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐸𝑃)
136ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐵𝑃)
145ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐴𝑃)
154ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
168ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐷𝑃)
17 iscgra1.m . . . . . . . 8 = (dist‘𝐺)
18 simpllr 774 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑦𝑃)
19 simpr2 1191 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑦(𝐾𝐸)𝐷)
201, 2, 3, 18, 16, 12, 15, 19hlne2 26392 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐷𝐸)
21 iscgra1.1 . . . . . . . . . 10 (𝜑𝐴𝐵)
2221ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐴𝐵)
2322necomd 3071 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐵𝐴)
241, 2, 3, 16, 12, 12, 15, 20hlid 26395 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐷(𝐾𝐸)𝐷)
25 eqid 2821 . . . . . . . . . . 11 (cgrG‘𝐺) = (cgrG‘𝐺)
267ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐶𝑃)
27 simplr 767 . . . . . . . . . . 11 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑥𝑃)
28 simpr1 1190 . . . . . . . . . . 11 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩)
291, 17, 2, 25, 15, 14, 13, 26, 18, 12, 27, 28cgr3simp1 26306 . . . . . . . . . 10 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐴 𝐵) = (𝑦 𝐸))
3029eqcomd 2827 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝑦 𝐸) = (𝐴 𝐵))
311, 17, 2, 15, 18, 12, 14, 13, 30tgcgrcomlr 26266 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐸 𝑦) = (𝐵 𝐴))
32 iscgra1.2 . . . . . . . . . . 11 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
3332ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐴 𝐵) = (𝐷 𝐸))
3433eqcomd 2827 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐷 𝐸) = (𝐴 𝐵))
351, 17, 2, 15, 16, 12, 14, 13, 34tgcgrcomlr 26266 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐸 𝐷) = (𝐵 𝐴))
361, 2, 3, 12, 13, 14, 15, 16, 17, 20, 23, 18, 16, 19, 24, 31, 35hlcgreulem 26403 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑦 = 𝐷)
37 simpr3 1192 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝐹)
3836, 28, 37jca32 518 . . . . . 6 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
39 simprrl 779 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩)
40 simprl 769 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝑦 = 𝐷)
418ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐷𝑃)
429ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐸𝑃)
434ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐺 ∈ TarskiG)
441, 17, 2, 4, 5, 6, 8, 9, 32, 21tgcgrneq 26269 . . . . . . . . . 10 (𝜑𝐷𝐸)
4544ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐷𝐸)
461, 2, 3, 41, 41, 42, 43, 45hlid 26395 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐷(𝐾𝐸)𝐷)
4740, 46eqbrtrd 5088 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝑦(𝐾𝐸)𝐷)
48 simprrr 780 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝑥(𝐾𝐸)𝐹)
4939, 47, 483jca 1124 . . . . . 6 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹))
5038, 49impbida 799 . . . . 5 (((𝜑𝑦𝑃) ∧ 𝑥𝑃) → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹) ↔ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))))
5150rexbidva 3296 . . . 4 ((𝜑𝑦𝑃) → (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹) ↔ ∃𝑥𝑃 (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))))
52 r19.42v 3350 . . . 4 (∃𝑥𝑃 (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)) ↔ (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
5351, 52syl6bb 289 . . 3 ((𝜑𝑦𝑃) → (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹) ↔ (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))))
5453rexbidva 3296 . 2 (𝜑 → (∃𝑦𝑃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹) ↔ ∃𝑦𝑃 (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))))
55 id 22 . . . . . . . 8 (𝑦 = 𝐷𝑦 = 𝐷)
56 eqidd 2822 . . . . . . . 8 (𝑦 = 𝐷𝐸 = 𝐸)
57 eqidd 2822 . . . . . . . 8 (𝑦 = 𝐷𝑥 = 𝑥)
5855, 56, 57s3eqd 14226 . . . . . . 7 (𝑦 = 𝐷 → ⟨“𝑦𝐸𝑥”⟩ = ⟨“𝐷𝐸𝑥”⟩)
5958breq2d 5078 . . . . . 6 (𝑦 = 𝐷 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩))
6059anbi1d 631 . . . . 5 (𝑦 = 𝐷 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
6160rexbidv 3297 . . . 4 (𝑦 = 𝐷 → (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹) ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
6261ceqsrexv 3649 . . 3 (𝐷𝑃 → (∃𝑦𝑃 (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)) ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
638, 62syl 17 . 2 (𝜑 → (∃𝑦𝑃 (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)) ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
6411, 54, 633bitrd 307 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  ⟨“cs3 14204  Basecbs 16483  distcds 16574  TarskiGcstrkg 26216  Itvcitv 26222  cgrGccgrg 26296  hlGchlg 26386  cgrAccgra 26593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-trkgc 26234  df-trkgb 26235  df-trkgcb 26236  df-trkg 26239  df-cgrg 26297  df-hlg 26387  df-cgra 26594
This theorem is referenced by:  acopyeu  26620
  Copyright terms: Public domain W3C validator