MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa3 Structured version   Visualization version   GIF version

Theorem issubassa3 20093
Description: A subring that is also a subspace is a subalgebra. The key theorem is islss3 19727. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
issubassa.s 𝑆 = (𝑊s 𝐴)
issubassa.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
issubassa3 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ AssAlg)

Proof of Theorem issubassa3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubassa.s . . . 4 𝑆 = (𝑊s 𝐴)
21subrgbas 19540 . . 3 (𝐴 ∈ (SubRing‘𝑊) → 𝐴 = (Base‘𝑆))
32ad2antrl 726 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝐴 = (Base‘𝑆))
4 eqid 2820 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
51, 4resssca 16646 . . 3 (𝐴 ∈ (SubRing‘𝑊) → (Scalar‘𝑊) = (Scalar‘𝑆))
65ad2antrl 726 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (Scalar‘𝑊) = (Scalar‘𝑆))
7 eqidd 2821 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
8 eqid 2820 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
91, 8ressvsca 16647 . . 3 (𝐴 ∈ (SubRing‘𝑊) → ( ·𝑠𝑊) = ( ·𝑠𝑆))
109ad2antrl 726 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → ( ·𝑠𝑊) = ( ·𝑠𝑆))
11 eqid 2820 . . . 4 (.r𝑊) = (.r𝑊)
121, 11ressmulr 16621 . . 3 (𝐴 ∈ (SubRing‘𝑊) → (.r𝑊) = (.r𝑆))
1312ad2antrl 726 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (.r𝑊) = (.r𝑆))
14 assalmod 20088 . . 3 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
15 simpr 487 . . 3 ((𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿) → 𝐴𝐿)
16 issubassa.l . . . 4 𝐿 = (LSubSp‘𝑊)
171, 16lsslmod 19728 . . 3 ((𝑊 ∈ LMod ∧ 𝐴𝐿) → 𝑆 ∈ LMod)
1814, 15, 17syl2an 597 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ LMod)
191subrgring 19534 . . 3 (𝐴 ∈ (SubRing‘𝑊) → 𝑆 ∈ Ring)
2019ad2antrl 726 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ Ring)
214assasca 20090 . . 3 (𝑊 ∈ AssAlg → (Scalar‘𝑊) ∈ CRing)
2221adantr 483 . 2 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (Scalar‘𝑊) ∈ CRing)
23 idd 24 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) → 𝑥 ∈ (Base‘(Scalar‘𝑊))))
24 eqid 2820 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2524subrgss 19532 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑊) → 𝐴 ⊆ (Base‘𝑊))
2625ad2antrl 726 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝐴 ⊆ (Base‘𝑊))
2726sseld 3963 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (𝑦𝐴𝑦 ∈ (Base‘𝑊)))
2826sseld 3963 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → (𝑧𝐴𝑧 ∈ (Base‘𝑊)))
2923, 27, 283anim123d 1438 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → ((𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))))
3029imp 409 . . 3 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊)))
31 eqid 2820 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3224, 4, 31, 8, 11assaass 20086 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)(.r𝑊)𝑧) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3332adantlr 713 . . 3 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥( ·𝑠𝑊)𝑦)(.r𝑊)𝑧) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3430, 33syldan 593 . 2 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → ((𝑥( ·𝑠𝑊)𝑦)(.r𝑊)𝑧) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3524, 4, 31, 8, 11assaassr 20087 . . . 4 ((𝑊 ∈ AssAlg ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥( ·𝑠𝑊)𝑧)) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3635adantlr 713 . . 3 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑦(.r𝑊)(𝑥( ·𝑠𝑊)𝑧)) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
3730, 36syldan 593 . 2 (((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝐴𝑧𝐴)) → (𝑦(.r𝑊)(𝑥( ·𝑠𝑊)𝑧)) = (𝑥( ·𝑠𝑊)(𝑦(.r𝑊)𝑧)))
383, 6, 7, 10, 13, 18, 20, 22, 34, 37isassad 20092 1 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴𝐿)) → 𝑆 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  wss 3933  cfv 6352  (class class class)co 7153  Basecbs 16479  s cress 16480  .rcmulr 16562  Scalarcsca 16564   ·𝑠 cvsca 16565  Ringcrg 19293  CRingccrg 19294  SubRingcsubrg 19527  LModclmod 19630  LSubSpclss 19699  AssAlgcasa 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-2 11698  df-3 11699  df-4 11700  df-5 11701  df-6 11702  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-mgp 19236  df-ur 19248  df-ring 19295  df-subrg 19529  df-lmod 19632  df-lss 19700  df-assa 20081
This theorem is referenced by:  issubassa  20094  rnasclassa  20120
  Copyright terms: Public domain W3C validator