Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflcl Structured version   Visualization version   GIF version

Theorem lflcl 33817
Description: A linear functional value is a scalar. (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflf.d 𝐷 = (Scalar‘𝑊)
lflf.k 𝐾 = (Base‘𝐷)
lflf.v 𝑉 = (Base‘𝑊)
lflf.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflcl ((𝑊𝑌𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)

Proof of Theorem lflcl
StepHypRef Expression
1 lflf.d . . . 4 𝐷 = (Scalar‘𝑊)
2 lflf.k . . . 4 𝐾 = (Base‘𝐷)
3 lflf.v . . . 4 𝑉 = (Base‘𝑊)
4 lflf.f . . . 4 𝐹 = (LFnl‘𝑊)
51, 2, 3, 4lflf 33816 . . 3 ((𝑊𝑌𝐺𝐹) → 𝐺:𝑉𝐾)
653adant3 1079 . 2 ((𝑊𝑌𝐺𝐹𝑋𝑉) → 𝐺:𝑉𝐾)
7 simp3 1061 . 2 ((𝑊𝑌𝐺𝐹𝑋𝑉) → 𝑋𝑉)
86, 7ffvelrnd 6317 1 ((𝑊𝑌𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1992  wf 5846  cfv 5850  Basecbs 15776  Scalarcsca 15860  LFnlclfn 33810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-map 7805  df-lfl 33811
This theorem is referenced by:  lfl0  33818  lfladd  33819  lflsub  33820  lflmul  33821  lfl1  33823  lfladdcl  33824  lflnegcl  33828  lflvscl  33830  lkrsc  33850  eqlkr  33852  eqlkr3  33854  lkrlsp  33855  ldualvsubval  33910  dochkr1  36233  dochkr1OLDN  36234  lcfl7lem  36254  lclkrlem2m  36274  lclkrlem2o  36276  lclkrlem2p  36277  lcfrlem1  36297  lcfrlem2  36298  lcfrlem3  36299  lcfrlem29  36326  lcfrlem31  36328  lcfrlem33  36330  lcdvbasecl  36351
  Copyright terms: Public domain W3C validator