Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2m Structured version   Visualization version   GIF version

Theorem lclkrlem2m 37310
Description: Lemma for lclkr 37324. Construct a vector 𝐵 that makes the sum of functionals zero. Combine with 𝐵𝑉 to shorten overall proof. (Contributed by NM, 17-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2m.w (𝜑𝑈 ∈ LVec)
lclkrlem2m.b 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
lclkrlem2m.n (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
Assertion
Ref Expression
lclkrlem2m (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))

Proof of Theorem lclkrlem2m
StepHypRef Expression
1 lclkrlem2m.b . . 3 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
2 lclkrlem2m.w . . . . . 6 (𝜑𝑈 ∈ LVec)
3 lveclmod 19308 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
42, 3syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
5 lmodgrp 19072 . . . . 5 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
64, 5syl 17 . . . 4 (𝜑𝑈 ∈ Grp)
7 lclkrlem2m.x . . . 4 (𝜑𝑋𝑉)
8 lclkrlem2m.s . . . . . . . 8 𝑆 = (Scalar‘𝑈)
98lmodring 19073 . . . . . . 7 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
104, 9syl 17 . . . . . 6 (𝜑𝑆 ∈ Ring)
11 lclkrlem2m.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
12 lclkrlem2m.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
13 lclkrlem2m.p . . . . . . . 8 + = (+g𝐷)
14 lclkrlem2m.e . . . . . . . 8 (𝜑𝐸𝐹)
15 lclkrlem2m.g . . . . . . . 8 (𝜑𝐺𝐹)
1611, 12, 13, 4, 14, 15ldualvaddcl 34920 . . . . . . 7 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
17 eqid 2760 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
18 lclkrlem2m.v . . . . . . . 8 𝑉 = (Base‘𝑈)
198, 17, 18, 11lflcl 34854 . . . . . . 7 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑋𝑉) → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
202, 16, 7, 19syl3anc 1477 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
218lvecdrng 19307 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
222, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
23 lclkrlem2m.y . . . . . . . 8 (𝜑𝑌𝑉)
248, 17, 18, 11lflcl 34854 . . . . . . . 8 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑌𝑉) → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
252, 16, 23, 24syl3anc 1477 . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
26 lclkrlem2m.n . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
27 lclkrlem2m.z . . . . . . . 8 0 = (0g𝑆)
28 lclkrlem2m.i . . . . . . . 8 𝐼 = (invr𝑆)
2917, 27, 28drnginvrcl 18966 . . . . . . 7 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
3022, 25, 26, 29syl3anc 1477 . . . . . 6 (𝜑 → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
31 lclkrlem2m.q . . . . . . 7 × = (.r𝑆)
3217, 31ringcl 18761 . . . . . 6 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
3310, 20, 30, 32syl3anc 1477 . . . . 5 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
34 lclkrlem2m.t . . . . . 6 · = ( ·𝑠𝑈)
3518, 8, 34, 17lmodvscl 19082 . . . . 5 ((𝑈 ∈ LMod ∧ (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
364, 33, 23, 35syl3anc 1477 . . . 4 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
37 lclkrlem2m.m . . . . 5 = (-g𝑈)
3818, 37grpsubcl 17696 . . . 4 ((𝑈 ∈ Grp ∧ 𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
396, 7, 36, 38syl3anc 1477 . . 3 (𝜑 → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
401, 39syl5eqel 2843 . 2 (𝜑𝐵𝑉)
411fveq2i 6355 . . 3 ((𝐸 + 𝐺)‘𝐵) = ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)))
42 eqid 2760 . . . . . 6 (-g𝑆) = (-g𝑆)
438, 42, 18, 37, 11lflsub 34857 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ (𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)) → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
444, 16, 7, 36, 43syl112anc 1481 . . . 4 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
458, 17, 31, 18, 34, 11lflmul 34858 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉)) → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
464, 16, 33, 23, 45syl112anc 1481 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
4717, 31ringass 18764 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
4810, 20, 30, 25, 47syl13anc 1479 . . . . . . 7 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
49 eqid 2760 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
5017, 27, 31, 49, 28drnginvrl 18968 . . . . . . . . 9 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5122, 25, 26, 50syl3anc 1477 . . . . . . . 8 (𝜑 → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5251oveq2d 6829 . . . . . . 7 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5348, 52eqtrd 2794 . . . . . 6 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5417, 31, 49ringridm 18772 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5510, 20, 54syl2anc 696 . . . . . 6 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5646, 53, 553eqtrd 2798 . . . . 5 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((𝐸 + 𝐺)‘𝑋))
5756oveq2d 6829 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)))
58 ringgrp 18752 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
5910, 58syl 17 . . . . 5 (𝜑𝑆 ∈ Grp)
6017, 27, 42grpsubid 17700 . . . . 5 ((𝑆 ∈ Grp ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6159, 20, 60syl2anc 696 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6244, 57, 613eqtrd 2798 . . 3 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = 0 )
6341, 62syl5eq 2806 . 2 (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 0 )
6440, 63jca 555 1 (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  .rcmulr 16144  Scalarcsca 16146   ·𝑠 cvsca 16147  0gc0g 16302  Grpcgrp 17623  -gcsg 17625  1rcur 18701  Ringcrg 18747  invrcinvr 18871  DivRingcdr 18949  LModclmod 19065  LVecclvec 19304  LFnlclfn 34847  LDualcld 34913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-drng 18951  df-lmod 19067  df-lvec 19305  df-lfl 34848  df-ldual 34914
This theorem is referenced by:  lclkrlem2o  37312  lclkrlem2q  37314
  Copyright terms: Public domain W3C validator