Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2ylem Structured version   Visualization version   GIF version

Theorem line2ylem 44787
Description: Lemma for line2y 44791. This proof is based on counterexamples for the following cases: 1. 𝐶 ≠ 0: p = (0,0) (LHS of bicondional is false, RHS is true); 2. 𝐶 = 0 ∧ 𝐵 ≠ 0: p = (1,-A/B) (LHS of bicondional is true, RHS is false); 3. 𝐴 = 𝐵 = 𝐶 = 0: p = (1,1) (LHS of bicondional is true, RHS is false). (Contributed by AV, 4-Feb-2023.)
Hypotheses
Ref Expression
line2ylem.i 𝐼 = {1, 2}
line2ylem.p 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
line2ylem ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝑃,𝑝
Allowed substitution hint:   𝐼(𝑝)

Proof of Theorem line2ylem
StepHypRef Expression
1 ianor 978 . . . . 5 (¬ ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0) ↔ (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) ∨ ¬ 𝐶 = 0))
2 df-ne 3017 . . . . . . . . 9 (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0)
3 0re 10643 . . . . . . . . . . . 12 0 ∈ ℝ
4 line2ylem.i . . . . . . . . . . . . 13 𝐼 = {1, 2}
5 line2ylem.p . . . . . . . . . . . . 13 𝑃 = (ℝ ↑m 𝐼)
64, 5prelrrx2 44749 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → {⟨1, 0⟩, ⟨2, 0⟩} ∈ 𝑃)
73, 3, 6mp2an 690 . . . . . . . . . . 11 {⟨1, 0⟩, ⟨2, 0⟩} ∈ 𝑃
8 eqneqall 3027 . . . . . . . . . . . . . . . 16 (𝐶 = 0 → (𝐶 ≠ 0 → ¬ 0 = 0))
98com12 32 . . . . . . . . . . . . . . 15 (𝐶 ≠ 0 → (𝐶 = 0 → ¬ 0 = 0))
10 eqid 2821 . . . . . . . . . . . . . . . 16 0 = 0
1110pm2.24i 153 . . . . . . . . . . . . . . 15 (¬ 0 = 0 → 𝐶 = 0)
129, 11impbid1 227 . . . . . . . . . . . . . 14 (𝐶 ≠ 0 → (𝐶 = 0 ↔ ¬ 0 = 0))
1312adantl 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → (𝐶 = 0 ↔ ¬ 0 = 0))
14 xor3 386 . . . . . . . . . . . . 13 (¬ (𝐶 = 0 ↔ 0 = 0) ↔ (𝐶 = 0 ↔ ¬ 0 = 0))
1513, 14sylibr 236 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → ¬ (𝐶 = 0 ↔ 0 = 0))
16 simp1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
1716recnd 10669 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
1817mul01d 10839 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 0) = 0)
19 simp2 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
2019recnd 10669 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
2120mul01d 10839 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 0) = 0)
2218, 21oveq12d 7174 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 0) + (𝐵 · 0)) = (0 + 0))
23 00id 10815 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
2422, 23syl6eq 2872 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 0) + (𝐵 · 0)) = 0)
2524eqeq1d 2823 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 𝐶))
26 eqcom 2828 . . . . . . . . . . . . . . 15 (0 = 𝐶𝐶 = 0)
2725, 26syl6bb 289 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 · 0) + (𝐵 · 0)) = 𝐶𝐶 = 0))
2827adantr 483 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → (((𝐴 · 0) + (𝐵 · 0)) = 𝐶𝐶 = 0))
2928bibi1d 346 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → ((((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0) ↔ (𝐶 = 0 ↔ 0 = 0)))
3015, 29mtbird 327 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → ¬ (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0))
31 fveq1 6669 . . . . . . . . . . . . . . . . . 18 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝑝‘1) = ({⟨1, 0⟩, ⟨2, 0⟩}‘1))
32 1ex 10637 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
33 c0ex 10635 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
34 1ne2 11846 . . . . . . . . . . . . . . . . . . 19 1 ≠ 2
35 fvpr1g 6954 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0)
3632, 33, 34, 35mp3an 1457 . . . . . . . . . . . . . . . . . 18 ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0
3731, 36syl6eq 2872 . . . . . . . . . . . . . . . . 17 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝑝‘1) = 0)
3837oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · 0))
39 fveq1 6669 . . . . . . . . . . . . . . . . . 18 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝑝‘2) = ({⟨1, 0⟩, ⟨2, 0⟩}‘2))
40 2ex 11715 . . . . . . . . . . . . . . . . . . 19 2 ∈ V
41 fvpr2g 6955 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0)
4240, 33, 34, 41mp3an 1457 . . . . . . . . . . . . . . . . . 18 ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0
4339, 42syl6eq 2872 . . . . . . . . . . . . . . . . 17 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝑝‘2) = 0)
4443oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · 0))
4538, 44oveq12d 7174 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · 0) + (𝐵 · 0)))
4645eqeq1d 2823 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · 0) + (𝐵 · 0)) = 𝐶))
4737eqeq1d 2823 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → ((𝑝‘1) = 0 ↔ 0 = 0))
4846, 47bibi12d 348 . . . . . . . . . . . . 13 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0)))
4948notbid 320 . . . . . . . . . . . 12 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ ¬ (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0)))
5049rspcev 3623 . . . . . . . . . . 11 (({⟨1, 0⟩, ⟨2, 0⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
517, 30, 50sylancr 589 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
5251expcom 416 . . . . . . . . 9 (𝐶 ≠ 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
532, 52sylbir 237 . . . . . . . 8 𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
54 notnotb 317 . . . . . . . . . 10 (𝐶 = 0 ↔ ¬ ¬ 𝐶 = 0)
55 ianor 978 . . . . . . . . . . . 12 (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) ↔ (¬ 𝐴 ≠ 0 ∨ ¬ 𝐵 = 0))
56 df-ne 3017 . . . . . . . . . . . . . . 15 (𝐵 ≠ 0 ↔ ¬ 𝐵 = 0)
57 1red 10642 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 1 ∈ ℝ)
5816adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐴 ∈ ℝ)
5958renegcld 11067 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → -𝐴 ∈ ℝ)
6019adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐵 ∈ ℝ)
61 simprl 769 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐵 ≠ 0)
6259, 60, 61redivcld 11468 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (-𝐴 / 𝐵) ∈ ℝ)
634, 5prelrrx2 44749 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ (-𝐴 / 𝐵) ∈ ℝ) → {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} ∈ 𝑃)
6457, 62, 63syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} ∈ 𝑃)
65 ax-1ne0 10606 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
6665neii 3018 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
6710, 662th 266 . . . . . . . . . . . . . . . . . . . 20 (0 = 0 ↔ ¬ 1 = 0)
68 xor3 386 . . . . . . . . . . . . . . . . . . . 20 (¬ (0 = 0 ↔ 1 = 0) ↔ (0 = 0 ↔ ¬ 1 = 0))
6967, 68mpbir 233 . . . . . . . . . . . . . . . . . . 19 ¬ (0 = 0 ↔ 1 = 0)
7017mulid1d 10658 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 1) = 𝐴)
7170adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (𝐴 · 1) = 𝐴)
7217negcld 10984 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐴 ∈ ℂ)
7372adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → -𝐴 ∈ ℂ)
7420adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐵 ∈ ℂ)
7573, 74, 61divcan2d 11418 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (𝐵 · (-𝐴 / 𝐵)) = -𝐴)
7671, 75oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = (𝐴 + -𝐴))
7717negidd 10987 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + -𝐴) = 0)
7877adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (𝐴 + -𝐴) = 0)
7976, 78eqtrd 2856 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 0)
80 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐶 = 0)
8179, 80eqeq12d 2837 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 0 = 0))
8281bibi1d 346 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ((((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0) ↔ (0 = 0 ↔ 1 = 0)))
8369, 82mtbiri 329 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ¬ (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0))
84 fveq1 6669 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝑝‘1) = ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘1))
85 fvpr1g 6954 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘1) = 1)
8632, 32, 34, 85mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘1) = 1
8784, 86syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝑝‘1) = 1)
8887oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · 1))
89 fveq1 6669 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝑝‘2) = ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘2))
90 ovex 7189 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-𝐴 / 𝐵) ∈ V
91 fvpr2g 6955 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ V ∧ (-𝐴 / 𝐵) ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘2) = (-𝐴 / 𝐵))
9240, 90, 34, 91mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘2) = (-𝐴 / 𝐵)
9389, 92syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝑝‘2) = (-𝐴 / 𝐵))
9493oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · (-𝐴 / 𝐵)))
9588, 94oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))))
9695eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶))
9787eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → ((𝑝‘1) = 0 ↔ 1 = 0))
9896, 97bibi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0)))
9998notbid 320 . . . . . . . . . . . . . . . . . . 19 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ ¬ (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0)))
10099rspcev 3623 . . . . . . . . . . . . . . . . . 18 (({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
10164, 83, 100syl2anc 586 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
102101expcom 416 . . . . . . . . . . . . . . . 16 ((𝐵 ≠ 0 ∧ 𝐶 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
103102ex 415 . . . . . . . . . . . . . . 15 (𝐵 ≠ 0 → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
10456, 103sylbir 237 . . . . . . . . . . . . . 14 𝐵 = 0 → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
105 notnotb 317 . . . . . . . . . . . . . . 15 (𝐵 = 0 ↔ ¬ ¬ 𝐵 = 0)
106 nne 3020 . . . . . . . . . . . . . . . 16 𝐴 ≠ 0 ↔ 𝐴 = 0)
107106bicomi 226 . . . . . . . . . . . . . . 15 (𝐴 = 0 ↔ ¬ 𝐴 ≠ 0)
108 1re 10641 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
1094, 5prelrrx2 44749 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → {⟨1, 1⟩, ⟨2, 1⟩} ∈ 𝑃)
110108, 108, 109mp2an 690 . . . . . . . . . . . . . . . . . 18 {⟨1, 1⟩, ⟨2, 1⟩} ∈ 𝑃
111 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = 0 → (𝐴 · 1) = (0 · 1))
112111adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐴 · 1) = (0 · 1))
113 ax-1cn 10595 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℂ
114113mul02i 10829 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 · 1) = 0
115112, 114syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐴 · 1) = 0)
116 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 = 0 → (𝐵 · 1) = (0 · 1))
117116adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐵 · 1) = (0 · 1))
118117, 114syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐵 · 1) = 0)
119115, 118oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 = 0 ∧ 𝐴 = 0) → ((𝐴 · 1) + (𝐵 · 1)) = (0 + 0))
120119, 23syl6eq 2872 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 = 0 ∧ 𝐴 = 0) → ((𝐴 · 1) + (𝐵 · 1)) = 0)
121 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 = 0 → 𝐶 = 0)
122120, 121eqeqan12d 2838 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 0 = 0))
123122bibi1d 346 . . . . . . . . . . . . . . . . . . 19 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → ((((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0) ↔ (0 = 0 ↔ 1 = 0)))
12469, 123mtbiri 329 . . . . . . . . . . . . . . . . . 18 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → ¬ (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0))
125 fveq1 6669 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝑝‘1) = ({⟨1, 1⟩, ⟨2, 1⟩}‘1))
126 fvpr1g 6954 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, 1⟩}‘1) = 1)
12732, 32, 34, 126mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨1, 1⟩, ⟨2, 1⟩}‘1) = 1
128125, 127syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝑝‘1) = 1)
129128oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · 1))
130 fveq1 6669 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝑝‘2) = ({⟨1, 1⟩, ⟨2, 1⟩}‘2))
131 fvpr2g 6955 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, 1⟩}‘2) = 1)
13240, 32, 34, 131mp3an 1457 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨1, 1⟩, ⟨2, 1⟩}‘2) = 1
133130, 132syl6eq 2872 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝑝‘2) = 1)
134133oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · 1))
135129, 134oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · 1) + (𝐵 · 1)))
136135eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · 1) + (𝐵 · 1)) = 𝐶))
137128eqeq1d 2823 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → ((𝑝‘1) = 0 ↔ 1 = 0))
138136, 137bibi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0)))
139138notbid 320 . . . . . . . . . . . . . . . . . . 19 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ ¬ (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0)))
140139rspcev 3623 . . . . . . . . . . . . . . . . . 18 (({⟨1, 1⟩, ⟨2, 1⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
141110, 124, 140sylancr 589 . . . . . . . . . . . . . . . . 17 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
142141a1d 25 . . . . . . . . . . . . . . . 16 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
143142ex 415 . . . . . . . . . . . . . . 15 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
144105, 107, 143syl2anbr 600 . . . . . . . . . . . . . 14 ((¬ ¬ 𝐵 = 0 ∧ ¬ 𝐴 ≠ 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
145104, 144jaoi3 1055 . . . . . . . . . . . . 13 ((¬ 𝐵 = 0 ∨ ¬ 𝐴 ≠ 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
146145orcoms 868 . . . . . . . . . . . 12 ((¬ 𝐴 ≠ 0 ∨ ¬ 𝐵 = 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
14755, 146sylbi 219 . . . . . . . . . . 11 (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
148147com12 32 . . . . . . . . . 10 (𝐶 = 0 → (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
14954, 148sylbir 237 . . . . . . . . 9 (¬ ¬ 𝐶 = 0 → (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
150149imp 409 . . . . . . . 8 ((¬ ¬ 𝐶 = 0 ∧ ¬ (𝐴 ≠ 0 ∧ 𝐵 = 0)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
15153, 150jaoi3 1055 . . . . . . 7 ((¬ 𝐶 = 0 ∨ ¬ (𝐴 ≠ 0 ∧ 𝐵 = 0)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
152151orcoms 868 . . . . . 6 ((¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) ∨ ¬ 𝐶 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
153152com12 32 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) ∨ ¬ 𝐶 = 0) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
1541, 153syl5bi 244 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
155 rexnal 3238 . . . 4 (∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
156154, 155syl6ib 253 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0) → ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
157156con4d 115 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0)))
158 df-3an 1085 . 2 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) ↔ ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0))
159157, 158syl6ibr 254 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  {cpr 4569  cop 4573  cfv 6355  (class class class)co 7156  m cmap 8406  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  -cneg 10871   / cdiv 11297  2c2 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701
This theorem is referenced by:  line2y  44791
  Copyright terms: Public domain W3C validator