Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linply1 Structured version   Visualization version   GIF version

Theorem linply1 42082
Description: A term of the form 𝑥𝐶 is a (univariate) polynomial, also called "linear polynomial". (Part of ply1remlem 23604). (Contributed by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
linply1.p 𝑃 = (Poly1𝑅)
linply1.b 𝐵 = (Base‘𝑃)
linply1.k 𝐾 = (Base‘𝑅)
linply1.x 𝑋 = (var1𝑅)
linply1.m = (-g𝑃)
linply1.a 𝐴 = (algSc‘𝑃)
linply1.g 𝐺 = (𝑋 (𝐴𝐶))
linply1.c (𝜑𝐶𝐾)
linply1.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
linply1 (𝜑𝐺𝐵)

Proof of Theorem linply1
StepHypRef Expression
1 linply1.g . 2 𝐺 = (𝑋 (𝐴𝐶))
2 linply1.r . . . 4 (𝜑𝑅 ∈ Ring)
3 linply1.p . . . . 5 𝑃 = (Poly1𝑅)
43ply1ring 19341 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5 ringgrp 18280 . . . 4 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
62, 4, 53syl 18 . . 3 (𝜑𝑃 ∈ Grp)
7 linply1.x . . . . 5 𝑋 = (var1𝑅)
8 linply1.b . . . . 5 𝐵 = (Base‘𝑃)
97, 3, 8vr1cl 19310 . . . 4 (𝑅 ∈ Ring → 𝑋𝐵)
102, 9syl 17 . . 3 (𝜑𝑋𝐵)
11 linply1.a . . . . . 6 𝐴 = (algSc‘𝑃)
12 linply1.k . . . . . 6 𝐾 = (Base‘𝑅)
133, 11, 12, 8ply1sclf 19378 . . . . 5 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
142, 13syl 17 . . . 4 (𝜑𝐴:𝐾𝐵)
15 linply1.c . . . 4 (𝜑𝐶𝐾)
1614, 15ffvelrnd 6151 . . 3 (𝜑 → (𝐴𝐶) ∈ 𝐵)
17 linply1.m . . . 4 = (-g𝑃)
188, 17grpsubcl 17208 . . 3 ((𝑃 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐴𝐶) ∈ 𝐵) → (𝑋 (𝐴𝐶)) ∈ 𝐵)
196, 10, 16, 18syl3anc 1317 . 2 (𝜑 → (𝑋 (𝐴𝐶)) ∈ 𝐵)
201, 19syl5eqel 2596 1 (𝜑𝐺𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1938  wf 5685  cfv 5689  (class class class)co 6425  Basecbs 15577  Grpcgrp 17135  -gcsg 17137  Ringcrg 18275  algSccascl 19034  var1cv1 19269  Poly1cpl1 19270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722  ax-inf2 8296  ax-cnex 9746  ax-resscn 9747  ax-1cn 9748  ax-icn 9749  ax-addcl 9750  ax-addrcl 9751  ax-mulcl 9752  ax-mulrcl 9753  ax-mulcom 9754  ax-addass 9755  ax-mulass 9756  ax-distr 9757  ax-i2m1 9758  ax-1ne0 9759  ax-1rid 9760  ax-rnegex 9761  ax-rrecex 9762  ax-cnre 9763  ax-pre-lttri 9764  ax-pre-lttrn 9765  ax-pre-ltadd 9766  ax-pre-mulgt0 9767
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-of 6670  df-ofr 6671  df-om 6833  df-1st 6933  df-2nd 6934  df-supp 7057  df-wrecs 7168  df-recs 7230  df-rdg 7268  df-1o 7322  df-2o 7323  df-oadd 7326  df-er 7504  df-map 7621  df-pm 7622  df-ixp 7670  df-en 7717  df-dom 7718  df-sdom 7719  df-fin 7720  df-fsupp 8034  df-oi 8173  df-card 8523  df-pnf 9830  df-mnf 9831  df-xr 9832  df-ltxr 9833  df-le 9834  df-sub 10018  df-neg 10019  df-nn 10775  df-2 10833  df-3 10834  df-4 10835  df-5 10836  df-6 10837  df-7 10838  df-8 10839  df-9 10840  df-n0 11047  df-z 11118  df-dec 11233  df-uz 11427  df-fz 12065  df-fzo 12202  df-seq 12531  df-hash 12847  df-struct 15579  df-ndx 15580  df-slot 15581  df-base 15582  df-sets 15583  df-ress 15584  df-plusg 15663  df-mulr 15664  df-sca 15666  df-vsca 15667  df-tset 15669  df-ple 15670  df-0g 15807  df-gsum 15808  df-mre 15959  df-mrc 15960  df-acs 15962  df-mgm 16955  df-sgrp 16997  df-mnd 17008  df-mhm 17048  df-submnd 17049  df-grp 17138  df-minusg 17139  df-sbg 17140  df-mulg 17254  df-subg 17304  df-ghm 17371  df-cntz 17463  df-cmn 17924  df-abl 17925  df-mgp 18218  df-ur 18230  df-ring 18277  df-subrg 18506  df-lmod 18593  df-lss 18656  df-ascl 19037  df-psr 19079  df-mvr 19080  df-mpl 19081  df-opsr 19083  df-psr1 19273  df-vr1 19274  df-ply1 19275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator