Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem4 Structured version   Visualization version   GIF version

Theorem lshpkrlem4 33915
Description: Lemma for lshpkrex 33920. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   + (𝑣,𝑢,𝑠,𝑟)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   · (𝑣,𝑢,𝑠,𝑟)   𝑈(𝑣,𝑢,𝑠,𝑟)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐾(𝑦,𝑣,𝑢,𝑠,𝑟)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑋(𝑣,𝑢,𝑠,𝑟)   0 (𝑥,𝑦,𝑣,𝑢,𝑠,𝑟,𝑙)   𝑍(𝑣,𝑢,𝑠,𝑟)

Proof of Theorem lshpkrlem4
StepHypRef Expression
1 simp3l 1087 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21oveq2d 6626 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → (𝑙 · 𝑢) = (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))))
3 simp3r 1088 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42, 3oveq12d 6628 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))))
5 simpl1 1062 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝜑)
6 lshpkrlem.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
7 lveclmod 19038 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
85, 6, 73syl 18 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑊 ∈ LMod)
9 simpl2 1063 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑙𝐾)
10 simpr2 1066 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑟𝑉)
11 simpl3 1064 . . . . . . . . 9 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑢𝑉)
12 lshpkrlem.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
13 lshpkrlem.a . . . . . . . . . 10 + = (+g𝑊)
14 lshpkrlem.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
15 lshpkrlem.p . . . . . . . . . 10 = (LSSum‘𝑊)
16 lshpkrlem.h . . . . . . . . . 10 𝐻 = (LSHyp‘𝑊)
176adantr 481 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑊 ∈ LVec)
18 lshpkrlem.u . . . . . . . . . . 11 (𝜑𝑈𝐻)
1918adantr 481 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑈𝐻)
20 lshpkrlem.z . . . . . . . . . . 11 (𝜑𝑍𝑉)
2120adantr 481 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑍𝑉)
22 simpr 477 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑢𝑉)
23 lshpkrlem.e . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
2423adantr 481 . . . . . . . . . 10 ((𝜑𝑢𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
25 lshpkrlem.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
26 lshpkrlem.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
27 lshpkrlem.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
28 lshpkrlem.o . . . . . . . . . 10 0 = (0g𝐷)
29 lshpkrlem.g . . . . . . . . . 10 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
3012, 13, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29lshpkrlem2 33913 . . . . . . . . 9 ((𝜑𝑢𝑉) → (𝐺𝑢) ∈ 𝐾)
315, 11, 30syl2anc 692 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑢) ∈ 𝐾)
325, 20syl 17 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑍𝑉)
3312, 25, 27, 26lmodvscl 18812 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
348, 31, 32, 33syl3anc 1323 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
3512, 13, 25, 27, 26lmodvsdi 18818 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙𝐾𝑟𝑉 ∧ ((𝐺𝑢) · 𝑍) ∈ 𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
368, 9, 10, 34, 35syl13anc 1325 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
37 eqid 2621 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
3812, 25, 27, 26, 37lmodvsass 18820 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
398, 9, 31, 32, 38syl13anc 1325 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
4039oveq2d 6626 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
4136, 40eqtr4d 2658 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)))
4241oveq1d 6625 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))))
4312, 25, 27, 26lmodvscl 18812 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑟𝑉) → (𝑙 · 𝑟) ∈ 𝑉)
448, 9, 10, 43syl3anc 1323 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · 𝑟) ∈ 𝑉)
4525, 26, 37lmodmcl 18807 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
468, 9, 31, 45syl3anc 1323 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
4712, 25, 27, 26lmodvscl 18812 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾𝑍𝑉) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
488, 46, 32, 47syl3anc 1323 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
49 simpr3 1067 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑠𝑉)
50 simpr1 1065 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑣𝑉)
516adantr 481 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
5218adantr 481 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑈𝐻)
5320adantr 481 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑍𝑉)
54 simpr 477 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑣𝑉)
5523adantr 481 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
5612, 13, 14, 15, 16, 51, 52, 53, 54, 55, 25, 26, 27, 28, 29lshpkrlem2 33913 . . . . . . . 8 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
575, 50, 56syl2anc 692 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑣) ∈ 𝐾)
5812, 25, 27, 26lmodvscl 18812 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
598, 57, 32, 58syl3anc 1323 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
6012, 13lmod4 18845 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑙 · 𝑟) ∈ 𝑉 ∧ ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉) ∧ (𝑠𝑉 ∧ ((𝐺𝑣) · 𝑍) ∈ 𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
618, 44, 48, 49, 59, 60syl122anc 1332 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
62 eqid 2621 . . . . . . . 8 (+g𝐷) = (+g𝐷)
6312, 13, 25, 27, 26, 62lmodvsdir 18819 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾 ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
648, 46, 57, 32, 63syl13anc 1325 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
6564oveq2d 6626 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
6661, 65eqtr4d 2658 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
6742, 66eqtrd 2655 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
68673adant3 1079 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
694, 68eqtrd 2655 1 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  {csn 4153  cmpt 4678  cfv 5852  crio 6570  (class class class)co 6610  Basecbs 15792  +gcplusg 15873  .rcmulr 15874  Scalarcsca 15876   ·𝑠 cvsca 15877  0gc0g 16032  LSSumclsm 17981  LModclmod 18795  LSpanclspn 18903  LVecclvec 19034  LSHypclsh 33777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-subg 17523  df-cntz 17682  df-lsm 17983  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-drng 18681  df-lmod 18797  df-lss 18865  df-lsp 18904  df-lvec 19035  df-lshyp 33779
This theorem is referenced by:  lshpkrlem5  33916
  Copyright terms: Public domain W3C validator