MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsass Structured version   Visualization version   GIF version

Theorem lmodvsass 19661
Description: Associative law for scalar product. (ax-hvmulass 28786 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsass.v 𝑉 = (Base‘𝑊)
lmodvsass.f 𝐹 = (Scalar‘𝑊)
lmodvsass.s · = ( ·𝑠𝑊)
lmodvsass.k 𝐾 = (Base‘𝐹)
lmodvsass.t × = (.r𝐹)
Assertion
Ref Expression
lmodvsass ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))

Proof of Theorem lmodvsass
StepHypRef Expression
1 lmodvsass.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 eqid 2823 . . . . . . 7 (+g𝑊) = (+g𝑊)
3 lmodvsass.s . . . . . . 7 · = ( ·𝑠𝑊)
4 lmodvsass.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
5 lmodvsass.k . . . . . . 7 𝐾 = (Base‘𝐹)
6 eqid 2823 . . . . . . 7 (+g𝐹) = (+g𝐹)
7 lmodvsass.t . . . . . . 7 × = (.r𝐹)
8 eqid 2823 . . . . . . 7 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 19641 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g𝑊)𝑋)) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simprld 770 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
11103expa 1114 . . . 4 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
1211anabsan2 672 . . 3 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ 𝑋𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
1312exp42 438 . 2 (𝑊 ∈ LMod → (𝑄𝐾 → (𝑅𝐾 → (𝑋𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))))))
14133imp2 1345 1 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  1rcur 19253  LModclmod 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-ov 7161  df-lmod 19638
This theorem is referenced by:  lmodvs0  19670  lmodvsneg  19680  lmodsubvs  19692  lmodsubdi  19693  lmodsubdir  19694  islss3  19733  lss1d  19737  prdslmodd  19743  lmodvsinv  19810  lmhmvsca  19819  lvecvs0or  19882  lssvs0or  19884  lvecinv  19887  lspsnvs  19888  lspfixed  19902  lspsolvlem  19916  lspsolv  19917  assa2ass  20097  ascldimul  20118  ascldimulOLD  20119  assamulgscmlem2  20131  mplmon2mul  20283  frlmup1  20944  smatvscl  21135  matinv  21288  clmvsass  23695  cvsi  23736  imaslmod  30924  lshpkrlem4  36251  lcdvsass  38745  baerlem3lem1  38845  hgmapmul  39033  prjspertr  39262  mendlmod  39800  lincscm  44492  ldepsprlem  44534  lincresunit3lem3  44536  lincresunit3lem1  44541
  Copyright terms: Public domain W3C validator