MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsass Structured version   Visualization version   GIF version

Theorem lmodvsass 18657
Description: Associative law for scalar product. (ax-hvmulass 27054 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsass.v 𝑉 = (Base‘𝑊)
lmodvsass.f 𝐹 = (Scalar‘𝑊)
lmodvsass.s · = ( ·𝑠𝑊)
lmodvsass.k 𝐾 = (Base‘𝐹)
lmodvsass.t × = (.r𝐹)
Assertion
Ref Expression
lmodvsass ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))

Proof of Theorem lmodvsass
StepHypRef Expression
1 lmodvsass.v . . . . . . . 8 𝑉 = (Base‘𝑊)
2 eqid 2609 . . . . . . . 8 (+g𝑊) = (+g𝑊)
3 lmodvsass.s . . . . . . . 8 · = ( ·𝑠𝑊)
4 lmodvsass.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
5 lmodvsass.k . . . . . . . 8 𝐾 = (Base‘𝐹)
6 eqid 2609 . . . . . . . 8 (+g𝐹) = (+g𝐹)
7 lmodvsass.t . . . . . . . 8 × = (.r𝐹)
8 eqid 2609 . . . . . . . 8 (1r𝐹) = (1r𝐹)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 18637 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑅 · 𝑋) ∈ 𝑉 ∧ (𝑅 · (𝑋(+g𝑊)𝑋)) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · 𝑋)) ∧ ((𝑄(+g𝐹)𝑅) · 𝑋) = ((𝑄 · 𝑋)(+g𝑊)(𝑅 · 𝑋))) ∧ (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋)))
109simprd 477 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → (((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)) ∧ ((1r𝐹) · 𝑋) = 𝑋))
1110simpld 473 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
12113expa 1256 . . . 4 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ (𝑋𝑉𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
1312anabsan2 858 . . 3 (((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾)) ∧ 𝑋𝑉) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
1413exp42 636 . 2 (𝑊 ∈ LMod → (𝑄𝐾 → (𝑅𝐾 → (𝑋𝑉 → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))))))
15143imp2 1273 1 ((𝑊 ∈ LMod ∧ (𝑄𝐾𝑅𝐾𝑋𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  cfv 5790  (class class class)co 6527  Basecbs 15641  +gcplusg 15714  .rcmulr 15715  Scalarcsca 15717   ·𝑠 cvsca 15718  1rcur 18270  LModclmod 18632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-nul 4712
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-iota 5754  df-fv 5798  df-ov 6530  df-lmod 18634
This theorem is referenced by:  lmodvs0  18666  lmodvsneg  18676  lmodsubvs  18688  lmodsubdi  18689  lmodsubdir  18690  islss3  18726  lss1d  18730  prdslmodd  18736  lmodvsinv  18803  lmhmvsca  18812  lvecvs0or  18875  lssvs0or  18877  lvecinv  18880  lspsnvs  18881  lspfixed  18895  lspsolvlem  18909  lspsolv  18910  assa2ass  19089  asclrhm  19109  assamulgscmlem2  19116  mplmon2mul  19268  frlmup1  19898  smatvscl  20091  matinv  20244  clmvsass  22628  cvsi  22667  lshpkrlem4  33214  lcdvsass  35710  baerlem3lem1  35810  hgmapmul  36001  mendlmod  36578  lincscm  42008  ldepsprlem  42050  lincresunit3lem3  42052  lincresunit3lem1  42057
  Copyright terms: Public domain W3C validator