MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modaddmodup Structured version   Visualization version   GIF version

Theorem modaddmodup 13292
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
modaddmodup ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))

Proof of Theorem modaddmodup
StepHypRef Expression
1 elfzoelz 13028 . . . . . . . 8 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℤ)
21zred 12074 . . . . . . 7 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → 𝐵 ∈ ℝ)
32adantr 483 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
4 zmodcl 13249 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℕ0)
54nn0red 11943 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ∈ ℝ)
65adantl 484 . . . . . 6 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
73, 6readdcld 10656 . . . . 5 ((𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
87ancoms 461 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → (𝐵 + (𝐴 mod 𝑀)) ∈ ℝ)
9 nnrp 12387 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
109ad2antlr 725 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝑀 ∈ ℝ+)
11 elfzo2 13031 . . . . . 6 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) ↔ (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀))
12 eluz2 12236 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ↔ ((𝑀 − (𝐴 mod 𝑀)) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵))
13 nnre 11631 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413adantl 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℝ)
1514adantl 484 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝑀 ∈ ℝ)
165adantl 484 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐴 mod 𝑀) ∈ ℝ)
17 zre 11972 . . . . . . . . . . . . 13 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
1817adantr 483 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → 𝐵 ∈ ℝ)
1915, 16, 18lesubaddd 11223 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2019biimpd 231 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2120impancom 454 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
22213adant1 1126 . . . . . . . 8 (((𝑀 − (𝐴 mod 𝑀)) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 − (𝐴 mod 𝑀)) ≤ 𝐵) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2312, 22sylbi 219 . . . . . . 7 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
24233ad2ant1 1129 . . . . . 6 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2511, 24sylbi 219 . . . . 5 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀))))
2625impcom 410 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)))
27 eluzelz 12240 . . . . . . . . 9 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → 𝐵 ∈ ℤ)
2817, 5anim12i 614 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ))
2913, 13jca 514 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3029adantl 484 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3130adantl 484 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ))
3228, 31jca 514 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) → ((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)))
3332adantr 483 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → ((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)))
34 simpr 487 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → 𝐵 < 𝑀)
35 zre 11972 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
36 modlt 13238 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) < 𝑀)
3735, 9, 36syl2an 597 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) < 𝑀)
385, 14, 37ltled 10774 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐴 mod 𝑀) ≤ 𝑀)
3938ad2antlr 725 . . . . . . . . . . . . . 14 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐴 mod 𝑀) ≤ 𝑀)
4034, 39jca 514 . . . . . . . . . . . . 13 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 < 𝑀 ∧ (𝐴 mod 𝑀) ≤ 𝑀))
41 ltleadd 11109 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ ∧ (𝐴 mod 𝑀) ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ)) → ((𝐵 < 𝑀 ∧ (𝐴 mod 𝑀) ≤ 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀)))
4233, 40, 41sylc 65 . . . . . . . . . . . 12 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (𝑀 + 𝑀))
43 nncn 11632 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
44432timesd 11867 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) = (𝑀 + 𝑀))
4544adantl 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) = (𝑀 + 𝑀))
4645ad2antlr 725 . . . . . . . . . . . 12 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (2 · 𝑀) = (𝑀 + 𝑀))
4742, 46breqtrrd 5080 . . . . . . . . . . 11 (((𝐵 ∈ ℤ ∧ (𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ)) ∧ 𝐵 < 𝑀) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
4847exp31 422 . . . . . . . . . 10 (𝐵 ∈ ℤ → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 < 𝑀 → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
4948com23 86 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵 < 𝑀 → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
5027, 49syl 17 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) → (𝐵 < 𝑀 → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))))
5150imp 409 . . . . . . 7 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
52513adant2 1127 . . . . . 6 ((𝐵 ∈ (ℤ‘(𝑀 − (𝐴 mod 𝑀))) ∧ 𝑀 ∈ ℤ ∧ 𝐵 < 𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
5311, 52sylbi 219 . . . . 5 (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀)))
5453impcom 410 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))
55 2submod 13290 . . . . 5 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) − 𝑀))
5655eqcomd 2827 . . . 4 ((((𝐵 + (𝐴 mod 𝑀)) ∈ ℝ ∧ 𝑀 ∈ ℝ+) ∧ (𝑀 ≤ (𝐵 + (𝐴 mod 𝑀)) ∧ (𝐵 + (𝐴 mod 𝑀)) < (2 · 𝑀))) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀))
578, 10, 26, 54, 56syl22anc 836 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀))
5835adantr 483 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℝ)
5958adantr 483 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝐴 ∈ ℝ)
602adantl 484 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → 𝐵 ∈ ℝ)
61 modadd2mod 13279 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6259, 60, 10, 61syl3anc 1367 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6357, 62eqtrd 2856 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ 𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
6463ex 415 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝐵 ∈ ((𝑀 − (𝐴 mod 𝑀))..^𝑀) → ((𝐵 + (𝐴 mod 𝑀)) − 𝑀) = ((𝐵 + 𝐴) mod 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5052  cfv 6341  (class class class)co 7142  cr 10522   + caddc 10526   · cmul 10528   < clt 10661  cle 10662  cmin 10856  cn 11624  2c2 11679  cz 11968  cuz 12230  +crp 12376  ..^cfzo 13023   mod cmo 13227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8892  df-inf 8893  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-n0 11885  df-z 11969  df-uz 12231  df-rp 12377  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228
This theorem is referenced by:  cshwidxmod  14150
  Copyright terms: Public domain W3C validator