MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpfpf1 Structured version   Visualization version   GIF version

Theorem mpfpf1 20510
Description: Convert a multivariate polynomial function to univariate. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pf1rcl.q 𝑄 = ran (eval1𝑅)
pf1f.b 𝐵 = (Base‘𝑅)
mpfpf1.q 𝐸 = ran (1o eval 𝑅)
Assertion
Ref Expression
mpfpf1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
Distinct variable groups:   𝑦,𝐵   𝑦,𝐸   𝑦,𝐹   𝑦,𝑅
Allowed substitution hint:   𝑄(𝑦)

Proof of Theorem mpfpf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mpfpf1.q . . . . 5 𝐸 = ran (1o eval 𝑅)
2 eqid 2820 . . . . . . 7 (1o eval 𝑅) = (1o eval 𝑅)
3 pf1f.b . . . . . . 7 𝐵 = (Base‘𝑅)
42, 3evlval 20304 . . . . . 6 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
54rneqi 5804 . . . . 5 ran (1o eval 𝑅) = ran ((1o evalSub 𝑅)‘𝐵)
61, 5eqtri 2843 . . . 4 𝐸 = ran ((1o evalSub 𝑅)‘𝐵)
76mpfrcl 20294 . . 3 (𝐹𝐸 → (1o ∈ V ∧ 𝑅 ∈ CRing ∧ 𝐵 ∈ (SubRing‘𝑅)))
87simp2d 1138 . 2 (𝐹𝐸𝑅 ∈ CRing)
9 id 22 . . . 4 (𝐹𝐸𝐹𝐸)
109, 1eleqtrdi 2922 . . 3 (𝐹𝐸𝐹 ∈ ran (1o eval 𝑅))
11 1on 8106 . . . . 5 1o ∈ On
12 eqid 2820 . . . . . 6 (1o mPoly 𝑅) = (1o mPoly 𝑅)
13 eqid 2820 . . . . . 6 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
142, 3, 12, 13evlrhm 20305 . . . . 5 ((1o ∈ On ∧ 𝑅 ∈ CRing) → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
1511, 8, 14sylancr 589 . . . 4 (𝐹𝐸 → (1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))))
16 eqid 2820 . . . . . 6 (Poly1𝑅) = (Poly1𝑅)
17 eqid 2820 . . . . . 6 (PwSer1𝑅) = (PwSer1𝑅)
18 eqid 2820 . . . . . 6 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
1916, 17, 18ply1bas 20359 . . . . 5 (Base‘(Poly1𝑅)) = (Base‘(1o mPoly 𝑅))
20 eqid 2820 . . . . 5 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
2119, 20rhmf 19474 . . . 4 ((1o eval 𝑅) ∈ ((1o mPoly 𝑅) RingHom (𝑅s (𝐵m 1o))) → (1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))))
22 ffn 6511 . . . 4 ((1o eval 𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s (𝐵m 1o))) → (1o eval 𝑅) Fn (Base‘(Poly1𝑅)))
23 fvelrnb 6723 . . . 4 ((1o eval 𝑅) Fn (Base‘(Poly1𝑅)) → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹))
2415, 21, 22, 234syl 19 . . 3 (𝐹𝐸 → (𝐹 ∈ ran (1o eval 𝑅) ↔ ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹))
2510, 24mpbid 234 . 2 (𝐹𝐸 → ∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹)
26 eqid 2820 . . . . . 6 (eval1𝑅) = (eval1𝑅)
2726, 2, 3, 12, 19evl1val 20488 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) = (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
28 eqid 2820 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
2926, 16, 28, 3evl1rhm 20491 . . . . . . . 8 (𝑅 ∈ CRing → (eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)))
30 eqid 2820 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
3118, 30rhmf 19474 . . . . . . . 8 ((eval1𝑅) ∈ ((Poly1𝑅) RingHom (𝑅s 𝐵)) → (eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)))
32 ffn 6511 . . . . . . . 8 ((eval1𝑅):(Base‘(Poly1𝑅))⟶(Base‘(𝑅s 𝐵)) → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
3329, 31, 323syl 18 . . . . . . 7 (𝑅 ∈ CRing → (eval1𝑅) Fn (Base‘(Poly1𝑅)))
34 fnfvelrn 6845 . . . . . . 7 (((eval1𝑅) Fn (Base‘(Poly1𝑅)) ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
3533, 34sylan 582 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ ran (eval1𝑅))
36 pf1rcl.q . . . . . 6 𝑄 = ran (eval1𝑅)
3735, 36eleqtrrdi 2923 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → ((eval1𝑅)‘𝑥) ∈ 𝑄)
3827, 37eqeltrrd 2913 . . . 4 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
39 coeq1 5725 . . . . 5 (((1o eval 𝑅)‘𝑥) = 𝐹 → (((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
4039eleq1d 2896 . . . 4 (((1o eval 𝑅)‘𝑥) = 𝐹 → ((((1o eval 𝑅)‘𝑥) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄 ↔ (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
4138, 40syl5ibcom 247 . . 3 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘(Poly1𝑅))) → (((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
4241rexlimdva 3283 . 2 (𝑅 ∈ CRing → (∃𝑥 ∈ (Base‘(Poly1𝑅))((1o eval 𝑅)‘𝑥) = 𝐹 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄))
438, 25, 42sylc 65 1 (𝐹𝐸 → (𝐹 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3138  Vcvv 3493  {csn 4564  cmpt 5143   × cxp 5550  ran crn 5553  ccom 5556  Oncon0 6188   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7153  1oc1o 8092  m cmap 8403  Basecbs 16479  s cpws 16716  CRingccrg 19294   RingHom crh 19460  SubRingcsubrg 19527   mPoly cmpl 20129   evalSub ces 20280   eval cevl 20281  PwSer1cps1 20339  Poly1cpl1 20341  eval1ce1 20473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-iin 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-se 5512  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-of 7406  df-ofr 7407  df-om 7578  df-1st 7686  df-2nd 7687  df-supp 7828  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-pm 8406  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fsupp 8831  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-2 11698  df-3 11699  df-4 11700  df-5 11701  df-6 11702  df-7 11703  df-8 11704  df-9 11705  df-n0 11896  df-z 11980  df-dec 12097  df-uz 12242  df-fz 12891  df-fzo 13032  df-seq 13368  df-hash 13689  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-gsum 16712  df-prds 16717  df-pws 16719  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19236  df-ur 19248  df-srg 19252  df-ring 19295  df-cring 19296  df-rnghom 19463  df-subrg 19529  df-lmod 19632  df-lss 19700  df-lsp 19740  df-assa 20081  df-asp 20082  df-ascl 20083  df-psr 20132  df-mvr 20133  df-mpl 20134  df-opsr 20136  df-evls 20282  df-evl 20283  df-psr1 20344  df-ply1 20346  df-evl1 20475
This theorem is referenced by:  pf1ind  20514
  Copyright terms: Public domain W3C validator