![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0n0n1ge2b | Structured version Visualization version GIF version |
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
Ref | Expression |
---|---|
nn0n0n1ge2b | ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0n0n1ge2 11548 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) | |
2 | 1 | 3expib 1117 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)) |
3 | ianor 510 | . . . 4 ⊢ (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)) | |
4 | nne 2934 | . . . . 5 ⊢ (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0) | |
5 | nne 2934 | . . . . 5 ⊢ (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1) | |
6 | 4, 5 | orbi12i 544 | . . . 4 ⊢ ((¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)) |
7 | 3, 6 | bitri 264 | . . 3 ⊢ (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)) |
8 | 2pos 11302 | . . . . . . . . 9 ⊢ 0 < 2 | |
9 | breq1 4805 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2)) | |
10 | 8, 9 | mpbiri 248 | . . . . . . . 8 ⊢ (𝑁 = 0 → 𝑁 < 2) |
11 | 10 | a1d 25 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
12 | 1lt2 11384 | . . . . . . . . 9 ⊢ 1 < 2 | |
13 | breq1 4805 | . . . . . . . . 9 ⊢ (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2)) | |
14 | 12, 13 | mpbiri 248 | . . . . . . . 8 ⊢ (𝑁 = 1 → 𝑁 < 2) |
15 | 14 | a1d 25 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
16 | 11, 15 | jaoi 393 | . . . . . 6 ⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
17 | 16 | impcom 445 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2) |
18 | nn0re 11491 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
19 | 2re 11280 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
20 | 18, 19 | jctir 562 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 2 ∈ ℝ)) |
21 | 20 | adantr 472 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 ∈ ℝ ∧ 2 ∈ ℝ)) |
22 | ltnle 10307 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁)) | |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁)) |
24 | 17, 23 | mpbid 222 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁) |
25 | 24 | ex 449 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁)) |
26 | 7, 25 | syl5bi 232 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁)) |
27 | 2, 26 | impcon4bid 217 | 1 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ≠ wne 2930 class class class wbr 4802 ℝcr 10125 0cc0 10126 1c1 10127 < clt 10264 ≤ cle 10265 2c2 11260 ℕ0cn0 11482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-n0 11483 |
This theorem is referenced by: xnn0n0n1ge2b 12156 |
Copyright terms: Public domain | W3C validator |