![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0n0n1ge2 | Structured version Visualization version GIF version |
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
Ref | Expression |
---|---|
nn0n0n1ge2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 11340 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | 1cnd 10094 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
3 | 1, 2, 2 | subsub4d 10461 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1))) |
4 | 1p1e2 11172 | . . . . . 6 ⊢ (1 + 1) = 2 | |
5 | 4 | oveq2i 6701 | . . . . 5 ⊢ (𝑁 − (1 + 1)) = (𝑁 − 2) |
6 | 3, 5 | syl6req 2702 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 2) = ((𝑁 − 1) − 1)) |
7 | 6 | 3ad2ant1 1102 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) = ((𝑁 − 1) − 1)) |
8 | 3simpa 1078 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
9 | elnnne0 11344 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
10 | 8, 9 | sylibr 224 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 𝑁 ∈ ℕ) |
11 | nnm1nn0 11372 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ0) |
13 | 1, 2 | subeq0ad 10440 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 ↔ 𝑁 = 1)) |
14 | 13 | biimpd 219 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) = 0 → 𝑁 = 1)) |
15 | 14 | necon3d 2844 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≠ 1 → (𝑁 − 1) ≠ 0)) |
16 | 15 | imp 444 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0) |
17 | 16 | 3adant2 1100 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ≠ 0) |
18 | elnnne0 11344 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ ↔ ((𝑁 − 1) ∈ ℕ0 ∧ (𝑁 − 1) ≠ 0)) | |
19 | 12, 17, 18 | sylanbrc 699 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 1) ∈ ℕ) |
20 | nnm1nn0 11372 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℕ → ((𝑁 − 1) − 1) ∈ ℕ0) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ((𝑁 − 1) − 1) ∈ ℕ0) |
22 | 7, 21 | eqeltrd 2730 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (𝑁 − 2) ∈ ℕ0) |
23 | 2nn0 11347 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
24 | 23 | jctl 563 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
25 | 24 | 3ad2ant1 1102 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
26 | nn0sub 11381 | . . 3 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0)) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → (2 ≤ 𝑁 ↔ (𝑁 − 2) ∈ ℕ0)) |
28 | 22, 27 | mpbird 247 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 class class class wbr 4685 (class class class)co 6690 0cc0 9974 1c1 9975 + caddc 9977 ≤ cle 10113 − cmin 10304 ℕcn 11058 2c2 11108 ℕ0cn0 11330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 |
This theorem is referenced by: nn0n0n1ge2b 11397 umgrclwwlkge2 26957 clwwisshclwwslem 26971 nnne1ge2 39818 iccpartiltu 41683 |
Copyright terms: Public domain | W3C validator |