MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcdvdstr Structured version   Visualization version   GIF version

Theorem pcdvdstr 15627
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcdvdstr ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))

Proof of Theorem pcdvdstr
StepHypRef Expression
1 0z 11426 . . . . . . 7 0 ∈ ℤ
2 zq 11832 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
31, 2ax-mp 5 . . . . . 6 0 ∈ ℚ
4 pcxcl 15612 . . . . . 6 ((𝑃 ∈ ℙ ∧ 0 ∈ ℚ) → (𝑃 pCnt 0) ∈ ℝ*)
53, 4mpan2 707 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 0) ∈ ℝ*)
6 xrleid 12021 . . . . 5 ((𝑃 pCnt 0) ∈ ℝ* → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
75, 6syl 17 . . . 4 (𝑃 ∈ ℙ → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
87ad2antrr 762 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
9 simpr 476 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0)
109oveq2d 6706 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
11 simplr3 1125 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐴𝐵)
129, 11eqbrtrrd 4709 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 0 ∥ 𝐵)
13 simplr2 1124 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐵 ∈ ℤ)
14 0dvds 15049 . . . . . 6 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
1513, 14syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (0 ∥ 𝐵𝐵 = 0))
1612, 15mpbid 222 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐵 = 0)
1716oveq2d 6706 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐵) = (𝑃 pCnt 0))
188, 10, 173brtr4d 4717 . 2 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
19 simpll 805 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℙ)
20 simplr1 1123 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
21 simpr 476 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
22 pczdvds 15614 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
2319, 20, 21, 22syl12anc 1364 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
24 simplr3 1125 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴𝐵)
25 prmnn 15435 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2619, 25syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℕ)
27 pczcl 15600 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
2819, 20, 21, 27syl12anc 1364 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ∈ ℕ0)
2926, 28nnexpcld 13070 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
3029nnzd 11519 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
31 simplr2 1124 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℤ)
32 dvdstr 15065 . . . . 5 (((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴𝐴𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3330, 20, 31, 32syl3anc 1366 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴𝐴𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3423, 24, 33mp2and 715 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)
35 pcdvdsb 15620 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3619, 31, 28, 35syl3anc 1366 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3734, 36mpbird 247 . 2 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
3818, 37pm2.61dane 2910 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  (class class class)co 6690  0cc0 9974  *cxr 10111  cle 10113  cn 11058  0cn0 11330  cz 11415  cq 11826  cexp 12900  cdvds 15027  cprime 15432   pCnt cpc 15588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-pc 15589
This theorem is referenced by:  pcgcd1  15628  pc2dvds  15630  dvdsppwf1o  24957
  Copyright terms: Public domain W3C validator