![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnexpcld | Structured version Visualization version GIF version |
Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
nnexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
nnexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
nnexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | nnexpcl 12913 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) | |
4 | 1, 2, 3 | syl2anc 694 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 (class class class)co 6690 ℕcn 11058 ℕ0cn0 11330 ↑cexp 12900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-seq 12842 df-exp 12901 |
This theorem is referenced by: bitsp1 15200 bitsfzolem 15203 bitsfzo 15204 bitsmod 15205 bitsfi 15206 bitscmp 15207 bitsinv1lem 15210 bitsinv1 15211 2ebits 15216 bitsinvp1 15218 sadcaddlem 15226 sadadd3 15230 sadaddlem 15235 sadasslem 15239 bitsres 15242 bitsuz 15243 bitsshft 15244 smumullem 15261 smumul 15262 rplpwr 15323 rppwr 15324 pclem 15590 pcprendvds2 15593 pcpre1 15594 pcpremul 15595 pcdvdsb 15620 pcidlem 15623 pcid 15624 pcdvdstr 15627 pcgcd1 15628 pcprmpw2 15633 pcaddlem 15639 pcadd 15640 pcfaclem 15649 pcfac 15650 pcbc 15651 oddprmdvds 15654 prmpwdvds 15655 pockthlem 15656 2expltfac 15846 pgpfi1 18056 sylow1lem1 18059 sylow1lem3 18061 sylow1lem4 18062 sylow1lem5 18063 pgpfi 18066 gexexlem 18301 ablfac1lem 18513 ablfac1b 18515 ablfac1eu 18518 aalioulem2 24133 aalioulem5 24136 aaliou3lem9 24150 isppw2 24886 sgmppw 24967 fsumvma2 24984 pclogsum 24985 chpchtsum 24989 logfacubnd 24991 bposlem1 25054 bposlem5 25058 gausslemma2d 25144 lgseisen 25149 chebbnd1lem1 25203 rpvmasumlem 25221 dchrisum0flblem1 25242 dchrisum0flblem2 25243 ostth2lem2 25368 ostth2lem3 25369 oddpwdc 30544 eulerpartlemgh 30568 jm3.1lem3 37903 inductionexd 38770 stoweidlem25 40560 stoweidlem45 40580 wallispi2lem1 40606 ovnsubaddlem1 41105 ovolval5lem2 41188 fmtnoodd 41770 fmtnof1 41772 fmtnosqrt 41776 fmtnorec4 41786 odz2prm2pw 41800 fmtnoprmfac1lem 41801 fmtnoprmfac1 41802 fmtnoprmfac2lem1 41803 fmtnoprmfac2 41804 2pwp1prm 41828 lighneallem1 41847 proththdlem 41855 proththd 41856 pw2m1lepw2m1 42635 nnpw2even 42648 logbpw2m1 42686 nnpw2pmod 42702 nnpw2p 42705 nnolog2flm1 42709 dignn0flhalflem1 42734 |
Copyright terms: Public domain | W3C validator |