MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlssphl Structured version   Visualization version   GIF version

Theorem phlssphl 20803
Description: A subspace of an inner product space (pre-Hilbert space) is an inner product space. (Contributed by AV, 25-Sep-2022.)
Hypotheses
Ref Expression
phlssphl.x 𝑋 = (𝑊s 𝑈)
phlssphl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
phlssphl ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)

Proof of Theorem phlssphl
Dummy variables 𝑞 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘𝑋) = (Base‘𝑋))
2 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g𝑋) = (+g𝑋))
3 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ( ·𝑠𝑋) = ( ·𝑠𝑋))
4 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑋))
5 phllmod 20774 . . . 4 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
6 phlssphl.x . . . . 5 𝑋 = (𝑊s 𝑈)
7 eqid 2821 . . . . 5 (0g𝑊) = (0g𝑊)
8 eqid 2821 . . . . 5 (0g𝑋) = (0g𝑋)
9 phlssphl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
106, 7, 8, 9lss0v 19788 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
115, 10sylan 582 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑋) = (0g𝑊))
1211eqcomd 2827 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g𝑊) = (0g𝑋))
13 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑋))
14 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)))
15 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑋)))
16 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑋)))
17 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑋)))
18 eqidd 2822 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑋)))
19 phllvec 20773 . . 3 (𝑊 ∈ PreHil → 𝑊 ∈ LVec)
206, 9lsslvec 19879 . . 3 ((𝑊 ∈ LVec ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
2119, 20sylan 582 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ LVec)
22 eqid 2821 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
236, 22resssca 16650 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
2423eqcomd 2827 . . . 4 (𝑈𝑆 → (Scalar‘𝑋) = (Scalar‘𝑊))
2524adantl 484 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) = (Scalar‘𝑊))
2622phlsrng 20775 . . . 4 (𝑊 ∈ PreHil → (Scalar‘𝑊) ∈ *-Ring)
2726adantr 483 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ *-Ring)
2825, 27eqeltrd 2913 . 2 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ *-Ring)
29 simpl 485 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ PreHil)
30 eqid 2821 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
316, 30ressbasss 16556 . . . . . 6 (Base‘𝑋) ⊆ (Base‘𝑊)
3231sseli 3963 . . . . 5 (𝑥 ∈ (Base‘𝑋) → 𝑥 ∈ (Base‘𝑊))
3331sseli 3963 . . . . 5 (𝑦 ∈ (Base‘𝑋) → 𝑦 ∈ (Base‘𝑊))
34 eqid 2821 . . . . . 6 (·𝑖𝑊) = (·𝑖𝑊)
35 eqid 2821 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3622, 34, 30, 35ipcl 20777 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3729, 32, 33, 36syl3an 1156 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))
3824fveq2d 6674 . . . . . . 7 (𝑈𝑆 → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
3938eleq2d 2898 . . . . . 6 (𝑈𝑆 → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4039adantl 484 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
41403ad2ant1 1129 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))))
4237, 41mpbird 259 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋)))
43 eqid 2821 . . . . . . . 8 (·𝑖𝑋) = (·𝑖𝑋)
446, 34, 43ssipeq 20800 . . . . . . 7 (𝑈𝑆 → (·𝑖𝑋) = (·𝑖𝑊))
4544oveqd 7173 . . . . . 6 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑦) = (𝑥(·𝑖𝑊)𝑦))
4645eleq1d 2897 . . . . 5 (𝑈𝑆 → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4746adantl 484 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
48473ad2ant1 1129 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑦) ∈ (Base‘(Scalar‘𝑋))))
4942, 48mpbird 259 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑦) ∈ (Base‘(Scalar‘𝑋)))
50293ad2ant1 1129 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ PreHil)
515adantr 483 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
52513ad2ant1 1129 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
5325fveq2d 6674 . . . . . . . . 9 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
5453eleq2d 2898 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (𝑞 ∈ (Base‘(Scalar‘𝑋)) ↔ 𝑞 ∈ (Base‘(Scalar‘𝑊))))
5554biimpa 479 . . . . . . 7 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
56553adant3 1128 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑞 ∈ (Base‘(Scalar‘𝑊)))
57323ad2ant1 1129 . . . . . . 7 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑥 ∈ (Base‘𝑊))
58573ad2ant3 1131 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘𝑊))
59 eqid 2821 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6030, 22, 59, 35lmodvscl 19651 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
6152, 56, 58, 60syl3anc 1367 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
62333ad2ant2 1130 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑦 ∈ (Base‘𝑊))
63623ad2ant3 1131 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
6431sseli 3963 . . . . . . 7 (𝑧 ∈ (Base‘𝑋) → 𝑧 ∈ (Base‘𝑊))
65643ad2ant3 1131 . . . . . 6 ((𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋)) → 𝑧 ∈ (Base‘𝑊))
66653ad2ant3 1131 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → 𝑧 ∈ (Base‘𝑊))
67 eqid 2821 . . . . . 6 (+g𝑊) = (+g𝑊)
68 eqid 2821 . . . . . 6 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
6922, 34, 30, 67, 68ipdir 20783 . . . . 5 ((𝑊 ∈ PreHil ∧ ((𝑞( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7050, 61, 63, 66, 69syl13anc 1368 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
71 eqid 2821 . . . . . . 7 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7222, 34, 30, 35, 59, 71ipass 20789 . . . . . 6 ((𝑊 ∈ PreHil ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7350, 56, 58, 66, 72syl13anc 1368 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
7473oveq1d 7171 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(·𝑖𝑊)𝑧)(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
7570, 74eqtrd 2856 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
766, 67ressplusg 16612 . . . . . . . . 9 (𝑈𝑆 → (+g𝑊) = (+g𝑋))
7776eqcomd 2827 . . . . . . . 8 (𝑈𝑆 → (+g𝑋) = (+g𝑊))
786, 59ressvsca 16651 . . . . . . . . . 10 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7978eqcomd 2827 . . . . . . . . 9 (𝑈𝑆 → ( ·𝑠𝑋) = ( ·𝑠𝑊))
8079oveqd 7173 . . . . . . . 8 (𝑈𝑆 → (𝑞( ·𝑠𝑋)𝑥) = (𝑞( ·𝑠𝑊)𝑥))
81 eqidd 2822 . . . . . . . 8 (𝑈𝑆𝑦 = 𝑦)
8277, 80, 81oveq123d 7177 . . . . . . 7 (𝑈𝑆 → ((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦) = ((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦))
83 eqidd 2822 . . . . . . 7 (𝑈𝑆𝑧 = 𝑧)
8444, 82, 83oveq123d 7177 . . . . . 6 (𝑈𝑆 → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧))
8524fveq2d 6674 . . . . . . 7 (𝑈𝑆 → (+g‘(Scalar‘𝑋)) = (+g‘(Scalar‘𝑊)))
8624fveq2d 6674 . . . . . . . 8 (𝑈𝑆 → (.r‘(Scalar‘𝑋)) = (.r‘(Scalar‘𝑊)))
87 eqidd 2822 . . . . . . . 8 (𝑈𝑆𝑞 = 𝑞)
8844oveqd 7173 . . . . . . . 8 (𝑈𝑆 → (𝑥(·𝑖𝑋)𝑧) = (𝑥(·𝑖𝑊)𝑧))
8986, 87, 88oveq123d 7177 . . . . . . 7 (𝑈𝑆 → (𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧)) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧)))
9044oveqd 7173 . . . . . . 7 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑧) = (𝑦(·𝑖𝑊)𝑧))
9185, 89, 90oveq123d 7177 . . . . . 6 (𝑈𝑆 → ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧)))
9284, 91eqeq12d 2837 . . . . 5 (𝑈𝑆 → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9392adantl 484 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
94933ad2ant1 1129 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → ((((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)) ↔ (((𝑞( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)(·𝑖𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖𝑊)𝑧))))
9575, 94mpbird 259 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑞 ∈ (Base‘(Scalar‘𝑋)) ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋) ∧ 𝑧 ∈ (Base‘𝑋))) → (((𝑞( ·𝑠𝑋)𝑥)(+g𝑋)𝑦)(·𝑖𝑋)𝑧) = ((𝑞(.r‘(Scalar‘𝑋))(𝑥(·𝑖𝑋)𝑧))(+g‘(Scalar‘𝑋))(𝑦(·𝑖𝑋)𝑧)))
9644adantl 484 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (·𝑖𝑋) = (·𝑖𝑊))
9796oveqdr 7184 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (𝑥(·𝑖𝑋)𝑥) = (𝑥(·𝑖𝑊)𝑥))
9824fveq2d 6674 . . . . . . 7 (𝑈𝑆 → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
9998adantl 484 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10099adantr 483 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
10197, 100eqeq12d 2837 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) ↔ (𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊))))
102 eqid 2821 . . . . . . 7 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
10322, 34, 30, 102, 7ipeq0 20782 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
10429, 32, 103syl2an 597 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) ↔ 𝑥 = (0g𝑊)))
105104biimpd 231 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g𝑊)))
106101, 105sylbid 242 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋)) → ((𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋)) → 𝑥 = (0g𝑊)))
1071063impia 1113 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ (𝑥(·𝑖𝑋)𝑥) = (0g‘(Scalar‘𝑋))) → 𝑥 = (0g𝑊))
10824fveq2d 6674 . . . . . . 7 (𝑈𝑆 → (*𝑟‘(Scalar‘𝑋)) = (*𝑟‘(Scalar‘𝑊)))
109108fveq1d 6672 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
110109adantl 484 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
1111103ad2ant1 1129 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)))
112 eqid 2821 . . . . . 6 (*𝑟‘(Scalar‘𝑊)) = (*𝑟‘(Scalar‘𝑊))
11322, 34, 30, 112ipcj 20778 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11429, 32, 33, 113syl3an 1156 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
115111, 114eqtrd 2856 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))
11645fveq2d 6674 . . . . . 6 (𝑈𝑆 → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)))
11744oveqd 7173 . . . . . 6 (𝑈𝑆 → (𝑦(·𝑖𝑋)𝑥) = (𝑦(·𝑖𝑊)𝑥))
118116, 117eqeq12d 2837 . . . . 5 (𝑈𝑆 → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
119118adantl 484 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
1201193ad2ant1 1129 . . 3 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → (((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥) ↔ ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥)))
121115, 120mpbird 259 . 2 (((𝑊 ∈ PreHil ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋)) → ((*𝑟‘(Scalar‘𝑋))‘(𝑥(·𝑖𝑋)𝑦)) = (𝑦(·𝑖𝑋)𝑥))
1221, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 21, 28, 49, 95, 107, 121isphld 20798 1 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑋 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  +gcplusg 16565  .rcmulr 16566  *𝑟cstv 16567  Scalarcsca 16568   ·𝑠 cvsca 16569  ·𝑖cip 16570  0gc0g 16713  *-Ringcsr 19615  LModclmod 19634  LSubSpclss 19703  LVecclvec 19874  PreHilcphl 20768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lmhm 19794  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-phl 20770
This theorem is referenced by:  cphsscph  23854
  Copyright terms: Public domain W3C validator