MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdir Structured version   Visualization version   GIF version

Theorem ipdir 20032
Description: Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
Assertion
Ref Expression
ipdir ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) (𝐵 , 𝐶)))

Proof of Theorem ipdir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
2 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
3 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
4 eqid 2651 . . . . . 6 (𝑥𝑉 ↦ (𝑥 , 𝐶)) = (𝑥𝑉 ↦ (𝑥 , 𝐶))
51, 2, 3, 4phllmhm 20025 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐶𝑉) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
653ad2antr3 1248 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
7 lmghm 19079 . . . 4 ((𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)))
86, 7syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)))
9 simpr1 1087 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
10 simpr2 1088 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
11 ipdir.g . . . 4 + = (+g𝑊)
12 ipdir.p . . . . 5 = (+g𝐹)
13 rlmplusg 19244 . . . . 5 (+g𝐹) = (+g‘(ringLMod‘𝐹))
1412, 13eqtri 2673 . . . 4 = (+g‘(ringLMod‘𝐹))
153, 11, 14ghmlin 17712 . . 3 (((𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) ∧ 𝐴𝑉𝐵𝑉) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
168, 9, 10, 15syl3anc 1366 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
17 phllmod 20023 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
183, 11lmodvacl 18925 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
1917, 18syl3an1 1399 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
20193adant3r3 1297 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
21 oveq1 6697 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝑥 , 𝐶) = ((𝐴 + 𝐵) , 𝐶))
22 ovex 6718 . . . 4 (𝑥 , 𝐶) ∈ V
2321, 4, 22fvmpt3i 6326 . . 3 ((𝐴 + 𝐵) ∈ 𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶))
2420, 23syl 17 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶))
25 oveq1 6697 . . . . 5 (𝑥 = 𝐴 → (𝑥 , 𝐶) = (𝐴 , 𝐶))
2625, 4, 22fvmpt3i 6326 . . . 4 (𝐴𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶))
279, 26syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶))
28 oveq1 6697 . . . . 5 (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶))
2928, 4, 22fvmpt3i 6326 . . . 4 (𝐵𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
3010, 29syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
3127, 30oveq12d 6708 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = ((𝐴 , 𝐶) (𝐵 , 𝐶)))
3216, 24, 313eqtr3d 2693 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cmpt 4762  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  Scalarcsca 15991  ·𝑖cip 15993   GrpHom cghm 17704  LModclmod 18911   LMHom clmhm 19067  ringLModcrglmod 19217  PreHilcphl 20017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-ndx 15907  df-slot 15908  df-sets 15911  df-plusg 16001  df-sca 16004  df-vsca 16005  df-ip 16006  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-ghm 17705  df-lmod 18913  df-lmhm 19070  df-lvec 19151  df-sra 19220  df-rgmod 19221  df-phl 20019
This theorem is referenced by:  ipdi  20033  ip2di  20034  ipsubdir  20035  ocvlss  20064  lsmcss  20084  cphdir  23051
  Copyright terms: Public domain W3C validator