![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipdir | Structured version Visualization version GIF version |
Description: Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.g | ⊢ + = (+g‘𝑊) |
ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
Ref | Expression |
---|---|
ipdir | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
3 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2651 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) | |
5 | 1, 2, 3, 4 | phllmhm 20025 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
6 | 5 | 3ad2antr3 1248 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
7 | lmghm 19079 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) |
9 | simpr1 1087 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
10 | simpr2 1088 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
11 | ipdir.g | . . . 4 ⊢ + = (+g‘𝑊) | |
12 | ipdir.p | . . . . 5 ⊢ ⨣ = (+g‘𝐹) | |
13 | rlmplusg 19244 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘(ringLMod‘𝐹)) | |
14 | 12, 13 | eqtri 2673 | . . . 4 ⊢ ⨣ = (+g‘(ringLMod‘𝐹)) |
15 | 3, 11, 14 | ghmlin 17712 | . . 3 ⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
16 | 8, 9, 10, 15 | syl3anc 1366 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
17 | phllmod 20023 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
18 | 3, 11 | lmodvacl 18925 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + 𝐵) ∈ 𝑉) |
19 | 17, 18 | syl3an1 1399 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + 𝐵) ∈ 𝑉) |
20 | 19 | 3adant3r3 1297 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 + 𝐵) ∈ 𝑉) |
21 | oveq1 6697 | . . . 4 ⊢ (𝑥 = (𝐴 + 𝐵) → (𝑥 , 𝐶) = ((𝐴 + 𝐵) , 𝐶)) | |
22 | ovex 6718 | . . . 4 ⊢ (𝑥 , 𝐶) ∈ V | |
23 | 21, 4, 22 | fvmpt3i 6326 | . . 3 ⊢ ((𝐴 + 𝐵) ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶)) |
24 | 20, 23 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶)) |
25 | oveq1 6697 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝐶) = (𝐴 , 𝐶)) | |
26 | 25, 4, 22 | fvmpt3i 6326 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶)) |
27 | 9, 26 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶)) |
28 | oveq1 6697 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶)) | |
29 | 28, 4, 22 | fvmpt3i 6326 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
30 | 10, 29 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
31 | 27, 30 | oveq12d 6708 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
32 | 16, 24, 31 | 3eqtr3d 2693 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 Scalarcsca 15991 ·𝑖cip 15993 GrpHom cghm 17704 LModclmod 18911 LMHom clmhm 19067 ringLModcrglmod 19217 PreHilcphl 20017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-ndx 15907 df-slot 15908 df-sets 15911 df-plusg 16001 df-sca 16004 df-vsca 16005 df-ip 16006 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-ghm 17705 df-lmod 18913 df-lmhm 19070 df-lvec 19151 df-sra 19220 df-rgmod 19221 df-phl 20019 |
This theorem is referenced by: ipdi 20033 ip2di 20034 ipsubdir 20035 ocvlss 20064 lsmcss 20084 cphdir 23051 |
Copyright terms: Public domain | W3C validator |