MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdir Structured version   Visualization version   GIF version

Theorem ipdir 19748
Description: Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
Assertion
Ref Expression
ipdir ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) (𝐵 , 𝐶)))

Proof of Theorem ipdir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
2 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
3 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
4 eqid 2609 . . . . . 6 (𝑥𝑉 ↦ (𝑥 , 𝐶)) = (𝑥𝑉 ↦ (𝑥 , 𝐶))
51, 2, 3, 4phllmhm 19741 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐶𝑉) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
653ad2antr3 1220 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
7 lmghm 18798 . . . 4 ((𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)))
86, 7syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)))
9 simpr1 1059 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
10 simpr2 1060 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
11 ipdir.g . . . 4 + = (+g𝑊)
12 ipdir.p . . . . 5 = (+g𝐹)
13 rlmplusg 18963 . . . . 5 (+g𝐹) = (+g‘(ringLMod‘𝐹))
1412, 13eqtri 2631 . . . 4 = (+g‘(ringLMod‘𝐹))
153, 11, 14ghmlin 17434 . . 3 (((𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) ∧ 𝐴𝑉𝐵𝑉) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
168, 9, 10, 15syl3anc 1317 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
17 phllmod 19739 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
183, 11lmodvacl 18646 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
1917, 18syl3an1 1350 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
20193adant3r3 1267 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
21 oveq1 6534 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝑥 , 𝐶) = ((𝐴 + 𝐵) , 𝐶))
22 ovex 6555 . . . 4 (𝑥 , 𝐶) ∈ V
2321, 4, 22fvmpt3i 6181 . . 3 ((𝐴 + 𝐵) ∈ 𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶))
2420, 23syl 17 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶))
25 oveq1 6534 . . . . 5 (𝑥 = 𝐴 → (𝑥 , 𝐶) = (𝐴 , 𝐶))
2625, 4, 22fvmpt3i 6181 . . . 4 (𝐴𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶))
279, 26syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶))
28 oveq1 6534 . . . . 5 (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶))
2928, 4, 22fvmpt3i 6181 . . . 4 (𝐵𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
3010, 29syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
3127, 30oveq12d 6545 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = ((𝐴 , 𝐶) (𝐵 , 𝐶)))
3216, 24, 313eqtr3d 2651 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  cmpt 4637  cfv 5790  (class class class)co 6527  Basecbs 15641  +gcplusg 15714  Scalarcsca 15717  ·𝑖cip 15719   GrpHom cghm 17426  LModclmod 18632   LMHom clmhm 18786  ringLModcrglmod 18936  PreHilcphl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-ndx 15644  df-slot 15645  df-sets 15647  df-plusg 15727  df-sca 15730  df-vsca 15731  df-ip 15732  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-grp 17194  df-ghm 17427  df-lmod 18634  df-lmhm 18789  df-lvec 18870  df-sra 18939  df-rgmod 18940  df-phl 19735
This theorem is referenced by:  ipdi  19749  ip2di  19750  ipsubdir  19751  ocvlss  19777  lsmcss  19797  cphdir  22736
  Copyright terms: Public domain W3C validator