MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyssc Structured version   Visualization version   GIF version

Theorem plyssc 23855
Description: Every polynomial ring is contained in the ring of polynomials over . (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyssc (Poly‘𝑆) ⊆ (Poly‘ℂ)

Proof of Theorem plyssc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ss 3949 . . 3 ∅ ⊆ (Poly‘ℂ)
2 sseq1 3610 . . 3 ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ)))
31, 2mpbiri 248 . 2 ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ))
4 n0 3912 . . 3 ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆))
5 plybss 23849 . . . . 5 (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
6 ssid 3608 . . . . 5 ℂ ⊆ ℂ
7 plyss 23854 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
85, 6, 7sylancl 693 . . . 4 (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
98exlimiv 1860 . . 3 (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
104, 9sylbi 207 . 2 ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ))
113, 10pm2.61ine 2879 1 (Poly‘𝑆) ⊆ (Poly‘ℂ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wex 1701  wcel 1992  wne 2796  wss 3560  c0 3896  cfv 5850  cc 9879  Polycply 23839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-i2m1 9949  ax-1ne0 9950  ax-rrecex 9953  ax-cnre 9954
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-map 7805  df-nn 10966  df-n0 11238  df-ply 23843
This theorem is referenced by:  plyaddcl  23875  plymulcl  23876  plysubcl  23877  coeval  23878  coeeu  23880  dgrval  23883  coef3  23887  coeidlem  23892  coemulc  23910  coesub  23912  dgrmulc  23926  dgrsub  23927  dgrcolem1  23928  dgrcolem2  23929  dgrco  23930  coecj  23933  dvply2  23940  dvnply  23942  quotval  23946  quotlem  23954  quotcl2  23956  quotdgr  23957  plyrem  23959  facth  23960  fta1  23962  quotcan  23963  vieta1lem1  23964  vieta1  23966  plyexmo  23967  ftalem7  24700  dgrsub2  37172
  Copyright terms: Public domain W3C validator