![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coecj | Structured version Visualization version GIF version |
Description: Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
plycj.1 | ⊢ 𝑁 = (deg‘𝐹) |
plycj.2 | ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) |
coecj.3 | ⊢ 𝐴 = (coeff‘𝐹) |
Ref | Expression |
---|---|
coecj | ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plycj.1 | . . 3 ⊢ 𝑁 = (deg‘𝐹) | |
2 | plycj.2 | . . 3 ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) | |
3 | cjcl 13889 | . . . 4 ⊢ (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ) |
5 | plyssc 24001 | . . . 4 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
6 | 5 | sseli 3632 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
7 | 1, 2, 4, 6 | plycj 24078 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ)) |
8 | dgrcl 24034 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
9 | 1, 8 | syl5eqel 2734 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0) |
10 | cjf 13888 | . . 3 ⊢ ∗:ℂ⟶ℂ | |
11 | coecj.3 | . . . 4 ⊢ 𝐴 = (coeff‘𝐹) | |
12 | 11 | coef3 24033 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
13 | fco 6096 | . . 3 ⊢ ((∗:ℂ⟶ℂ ∧ 𝐴:ℕ0⟶ℂ) → (∗ ∘ 𝐴):ℕ0⟶ℂ) | |
14 | 10, 12, 13 | sylancr 696 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐴):ℕ0⟶ℂ) |
15 | fvco3 6314 | . . . . . . . . 9 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) | |
16 | 12, 15 | sylan 487 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
17 | cj0 13942 | . . . . . . . . . 10 ⊢ (∗‘0) = 0 | |
18 | 17 | eqcomi 2660 | . . . . . . . . 9 ⊢ 0 = (∗‘0) |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 = (∗‘0)) |
20 | 16, 19 | eqeq12d 2666 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (∗‘(𝐴‘𝑘)) = (∗‘0))) |
21 | 12 | ffvelrnda 6399 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
22 | 0cnd 10071 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 ∈ ℂ) | |
23 | cj11 13946 | . . . . . . . 8 ⊢ (((𝐴‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝐴‘𝑘)) = (∗‘0) ↔ (𝐴‘𝑘) = 0)) | |
24 | 21, 22, 23 | syl2anc 694 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴‘𝑘)) = (∗‘0) ↔ (𝐴‘𝑘) = 0)) |
25 | 20, 24 | bitrd 268 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (𝐴‘𝑘) = 0)) |
26 | 25 | necon3bid 2867 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 ↔ (𝐴‘𝑘) ≠ 0)) |
27 | 11, 1 | dgrub2 24036 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) |
28 | plyco0 23993 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | |
29 | 9, 12, 28 | syl2anc 694 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
30 | 27, 29 | mpbid 222 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
31 | 30 | r19.21bi 2961 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
32 | 26, 31 | sylbid 230 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
33 | 32 | ralrimiva 2995 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
34 | plyco0 23993 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (∗ ∘ 𝐴):ℕ0⟶ℂ) → (((∗ ∘ 𝐴) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | |
35 | 9, 14, 34 | syl2anc 694 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (((∗ ∘ 𝐴) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
36 | 33, 35 | mpbird 247 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐴) “ (ℤ≥‘(𝑁 + 1))) = {0}) |
37 | 1, 2, 11 | plycjlem 24077 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
38 | 7, 9, 14, 36, 37 | coeeq 24028 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 {csn 4210 class class class wbr 4685 “ cima 5146 ∘ ccom 5147 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 0cc0 9974 1c1 9975 + caddc 9977 ≤ cle 10113 ℕ0cn0 11330 ℤ≥cuz 11725 ∗ccj 13880 Polycply 23985 coeffccoe 23987 degcdgr 23988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 df-0p 23482 df-ply 23989 df-coe 23991 df-dgr 23992 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |